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“Manners are not 
taught in lessons,” 
said Alice. “Lessons 
teach you to do 
sums, and things of 
that sort.” 

“And you do 
Addition?” the White 
Queen asked. 
“What's one and one 
and one and one and 
one and one and one 
and one and one and 
one?”

“I don't know,” said 
Alice. “I lost count.” 

“She can't do 
Addition,” the Red 
Queen interrupted. 

Excerpt: Through the Looking Glass, Lewis Carroll
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Turing machine syntax
Definition A Turing Machine is an automaton 
M=(Q,Σ,Γ,δ,q0,qacc,qrej) where

1. Q is a finite set of states
2. Σ is an input alphabet that does not include " t ", the 

special blank character
3. Γ is a tape alphabet satisfying

1. t ∈ Γ
2. Σ ⊂ Γ

4. δ:Q×Γ→ Q×Γ×{L,R} is the transition function
1. “staying put” is not an option, except at left end of tape

5. q0 is the initial state
6. qacc is the single accepting state
7. qrej is the single rejecting state

Alan Turing proposed the Turing Machine in 1936!

a | b | a | b | a | b | t | t | t | t | t | t | t | L

control

tape



Differences from Finite Automata
Turing machine

Can both read from and write onto tape.
No LIFO access restriction as in PDA’s stack

Read/write head (control) can move both 
left and right.
Tape is infinite.
Special states for rejecting and accepting 
take effect immediately.
In some cases machine can fail to halt…
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Differences in input mechanism 
A TM has a "tape head" that points to exactly one cell 
on its tape, which extends infinitely to the right

At each transition, the TM looks at the current state 
and the current cell, and decides what new state to 
move to, what to write on the current cell, and 
whether to move one cell to the left or one cell to the 
right (or stay put at left end of tape)
Hence the transition function δ:Q×Γ→ Q×Γ×{L,R} 

Each tape cell initially contains the blank character t
Our previous automata (DFAs, NFAs, PDAs) all had a 
separate read-only input stream
But in a TM, the input is given all at once and just 
written onto the left end of the tape — overwriting the 
blanks there

a | b | a | b | a | b | t | t | t | t | t | t | t | L

in state q7
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Turing machine computation
We define a set of instantaneous descriptions (IDs or 
configurations) and then show what memory-state 
snapshots may follow each other, according to the 
program M.
First, the snapshots: in a TM, ID(M) = Γ* Q Γ*

Each element of this set represents the entire tape 
contents, the current state, and the location of the 
tape head
In example below, the ID is    ab q7a babttL
So the character to the right of the state name is the 
"current" character
The tape always has infinitely many blanks on the 
right; we can write them or omit them as we please

a | b | a | b | a | b | t | t | t | t | t | t | t | L

in state q7
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Turing machine computation
Two IDs are related to each other (by `) if one can 
lead to the other (via 1 transition) according to the δ
function
So we look at all of the things that δ can say, starting 
with right moves:

Suppose δ(q,b) = (t,c,R) where
q ∈ Q - {qacc, qrej} and b ∈ Γ (states in green)
t ∈ Q and c ∈ Γ

R means "right move“ (after reading/writing)
Then           u qb v ` u ct v
where u,v∈Γ* are undisturbed, the state has changed 
from q to t, the tape cell has changed from b to c, 
and the head has moved one character to the right 
(over the now-changed character)
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Turing machine computation
Left moves

Suppose δ(q,b) = (t,c,L) where
q ∈ Q - {qacc, qrej} and b ∈ Γ (states in green)
t ∈ Q and c ∈ Γ

Then           ua qb v ` u tac v
where u,v∈Γ* and a∈Γ are undisturbed, the state 
has changed from q to t, the tape cell has 
changed from b to c, and the head has moved 
one character to the left
This says that one ID can lead to another ID 
when δ says to move left and there is a 
character a∈Γ to the left.  What if there is no 
such character?
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Turing machine computation
Left moves at left edge of tape

Suppose δ(q,b) = (t,c,L) where
q ∈ Q - {qacc, qrej} and b ∈ Γ (states in green)
t ∈ Q and c ∈ Γ

Then           qb v ` tc v
where v∈Γ* is undisturbed, the state has changed 
from q to t, the tape cell has changed from b to c
Where does this put the tape head in this case?

Note we have not explicitly covered the case where 
δ(q,b) = (t,c,L) and q∈{qacc,qrej}

Or when we move R instead of L
Conclusion: well, if the current ID is    u qb v
and q∈{qacc,qrej}, then no "next ID" is possible.  We 
say that the TM halts
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Some Ways to Describe Turing 
Machine Computation

1. Implementation-level description (high-level)
2. Instantaneous descriptions (IDs or configurations) 

specifying snapshots of tape and read-write head position 
as computation progresses.

3. Formal description (7-tuple)
4. Detailed state diagram.

We’ll discuss all 4 ways using Turing machine M1 in 
textbook (p. 138, 139, 145) for language:

We’ll also discuss Turing machine M2 in textbook (p. 143, 
144) for language:

}*}1,0{|#{ ∈= wwwB

}0|0{ 2 ≥= nA
n
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Implementation-Level Description
}*}1,0{|#{ ∈= wwwB

Small Examples:

- Accepting input:  101#101ttL
- Rejecting input:   0101#1000ttL
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Instantaneous Descriptions 
(Snapshots) }*}1,0{|#{ ∈= wwwB

Sample Input: 011000#011000



13

8

Formal Description and Detailed 
State Diagram }*}1,0{|#{ ∈= wwwB

Can 0,1 happen here?
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Detailed State Diagram
}*}1,0{|#{ ∈= wwwB

Small Examples:

- Accepting input:  101#101ttL
- Rejecting input:   0101#1000ttL

Can 0,1 happen here?
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Implementation-Level Description

}0|0{ 2 ≥= nA
n

}0|0{ 2 ≥= nA
n
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Formal Description (7-tuple) 
}0|0{ 2 ≥= nA

n
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Detailed State Diagram
}0|0{ 2 ≥= nA

n

Note different way of 
marking left end.
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Instantaneous Descriptions 
(IDs or configurations)

Sample Input: 0000

}0|0{ 2 ≥= nA
n
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Detailed State Diagram
}0|0{ 2 ≥= nA

n



More Examples…

See Textbook Examples:
Example 3.11 

Subtlety on detecting left end of tape.

Example 3.12  (element distinctness)
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}1,,  and  |{ ≥=×= kjikjicbaC kji
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Language recognized by TM
Finally, we let `* be the transitive, reflexive 
closure of `.  So if α and β are IDs, the 
statement  α `* β means "the TM can go 
from α to β in 0 or more steps"
The language recognized by M is
L(M) = { x∈Σ* | q0 x `* u qacc v for 

some u,v∈Γ* } (strings that are accepted by M)

Translation?
Note x ∈  Σ*, not Γ*
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TM language classes
Definition  A language L is Turing-
recognizable if there exists a TM M such 
that L = L(M).

Synonym: L is recursively enumerable, 
abbreviated "r.e.“ (see Section 3.2)

Definition The class of all Turing-
recognizable languages is 

Σ1 = { L ⊆ Σ* | L is Turing-recognizable }

The textbook does not assign a name like this; it 
just says "class of TM-recognizable langs"
Beware: The class Σ1 is not an alphabet like Σ
The naming is unfortunate but better than some 
of the alternatives
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Turing-Recognizable Languages
ALL

FINEach point is 
a language in 
this Venn 
diagram

REG

RPP

CFL

CFPPΣ1
Turing 

Recognizable
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Deciders
We've seen that when you start a TM with 
an input x, it can do three distinct things:

Accept x
Reject x
Run forever without accepting or rejecting x

We call this "looping" -- meaning that the TM 
runs forever.  (The "loop" might not be so 
simple, the point is it runs forever.)

Some TMs always accept or reject and 
never loop on any input whatsoever.  You 
could easily write an example of one.  A TM 
with this property is called a decider.

A decider always halts on every input
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Decidable languages
Definition  A language is decidable if 
there exists a decider TM M such that L = 
L(M)

Synonyms: L is "computable" and "recursive"
It is in general not easy to tell if a language is 
decidable or not

Definition The class of all Turing-
decidable languages is 

Σ0 = { L ⊆ Σ* | L is Turing-decidable}
Note Σ0 (decidable) versus Σ1 (recognizable) 
versus Σ (alphabet)
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Turing-Decidable Languages
ALL

FINEach point is 
a language in 
this Venn 
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1
Turing 

Recognizable

Turing 
Decidable
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Decidable versus recognizable
Fact (obvious)  Σ0 ⊆ Σ1

Every decider is automatically a recognizer too
Fact (not at all obvious) Σ0 ≠ Σ1

This means that there exists some language 
H ∈ Σ1 - Σ0

H is a language that can be recognized by some 
TM, but can't be recognized by any TM that 
always halts!

Fact (not at all obvious) Σ1 ≠ ALL
This means that there exists some language 
H2 ∈ ALL - Σ1

H2 is a language that can't even be recognized 
by any TM
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Ultimately…
ALL

FINEach point is 
a language in 
this Venn 
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1
Turing 

Recognizable

Turing 
Decidable

H

H2
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Reminder

The decidable languages: Σ0

The recognizable languages: Σ1
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Closure properties of Σ0 and Σ1

Σ1 is closed under ∪,∩, ·, ∗, reversal
Proofs for ∪ and ∩ are similar to the NFA 
constructions we used, if you use a 2-
tape TM (section 3.2)

Proof for reversal is also easy with a 2-
tape TM (section 3.2)

· and ∗ are somewhat harder

Not closed under complement

Σ0 is closed under all of these 
operations and complement as well
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Preview: a non-recognizable L

This all means that some L exists that 
is not recognized by any TM

What does it look like?
Is it important?    

YES, because of Church-Turing Thesis
Intuitive notion of algorithms = Turing 
machine algorithms
To be defined and discussed in Section 3.3
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