
1

91.304 Foundations of
(Theoretical) Computer Science

Chapter 3 Lecture Notes (Section 3.1: Turing Machines)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2013

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

mailto:dm@cs.uml.edu
http://creativecommons.org/licenses/by-sa/2.0/

2

“Manners are not
taught in lessons,”
said Alice. “Lessons
teach you to do
sums, and things of
that sort.”

“And you do
Addition?” the White
Queen asked.
“What's one and one
and one and one and
one and one and one
and one and one and
one?”

“I don't know,” said
Alice. “I lost count.”

“She can't do
Addition,” the Red
Queen interrupted.

Excerpt: Through the Looking Glass, Lewis Carroll

3

Turing machine syntax
Definition A Turing Machine is an automaton
M=(Q,Σ,Γ,δ,q0,qacc,qrej) where

1. Q is a finite set of states
2. Σ is an input alphabet that does not include " t ", the

special blank character
3. Γ is a tape alphabet satisfying

1. t ∈ Γ
2. Σ ⊂ Γ

4. δ:Q×Γ→ Q×Γ×{L,R} is the transition function
1. “staying put” is not an option, except at left end of tape

5. q0 is the initial state
6. qacc is the single accepting state
7. qrej is the single rejecting state

Alan Turing proposed the Turing Machine in 1936!

a | b | a | b | a | b | t | t | t | t | t | t | t | L

control

tape

Differences from Finite Automata
Turing machine

Can both read from and write onto tape.
No LIFO access restriction as in PDA’s stack

Read/write head (control) can move both
left and right.
Tape is infinite.
Special states for rejecting and accepting
take effect immediately.
In some cases machine can fail to halt…

4

a | b | a | b | a | b | t | t | t | t | t | t | t | L

control

tape

5

Differences in input mechanism
A TM has a "tape head" that points to exactly one cell
on its tape, which extends infinitely to the right

At each transition, the TM looks at the current state
and the current cell, and decides what new state to
move to, what to write on the current cell, and
whether to move one cell to the left or one cell to the
right (or stay put at left end of tape)
Hence the transition function δ:Q×Γ→ Q×Γ×{L,R}

Each tape cell initially contains the blank character t
Our previous automata (DFAs, NFAs, PDAs) all had a
separate read-only input stream
But in a TM, the input is given all at once and just
written onto the left end of the tape — overwriting the
blanks there

a | b | a | b | a | b | t | t | t | t | t | t | t | L

in state q7

6

Turing machine computation
We define a set of instantaneous descriptions (IDs or
configurations) and then show what memory-state
snapshots may follow each other, according to the
program M.
First, the snapshots: in a TM, ID(M) = Γ* Q Γ*

Each element of this set represents the entire tape
contents, the current state, and the location of the
tape head
In example below, the ID is ab q7a babttL
So the character to the right of the state name is the
"current" character
The tape always has infinitely many blanks on the
right; we can write them or omit them as we please

a | b | a | b | a | b | t | t | t | t | t | t | t | L

in state q7

7

Turing machine computation
Two IDs are related to each other (by `) if one can
lead to the other (via 1 transition) according to the δ
function
So we look at all of the things that δ can say, starting
with right moves:

Suppose δ(q,b) = (t,c,R) where
q ∈ Q - {qacc, qrej} and b ∈ Γ (states in green)
t ∈ Q and c ∈ Γ

R means "right move“ (after reading/writing)
Then u qb v ` u ct v
where u,v∈Γ* are undisturbed, the state has changed
from q to t, the tape cell has changed from b to c,
and the head has moved one character to the right
(over the now-changed character)

8

Turing machine computation
Left moves

Suppose δ(q,b) = (t,c,L) where
q ∈ Q - {qacc, qrej} and b ∈ Γ (states in green)
t ∈ Q and c ∈ Γ

Then ua qb v ` u tac v
where u,v∈Γ* and a∈Γ are undisturbed, the state
has changed from q to t, the tape cell has
changed from b to c, and the head has moved
one character to the left
This says that one ID can lead to another ID
when δ says to move left and there is a
character a∈Γ to the left. What if there is no
such character?

9

Turing machine computation
Left moves at left edge of tape

Suppose δ(q,b) = (t,c,L) where
q ∈ Q - {qacc, qrej} and b ∈ Γ (states in green)
t ∈ Q and c ∈ Γ

Then qb v ` tc v
where v∈Γ* is undisturbed, the state has changed
from q to t, the tape cell has changed from b to c
Where does this put the tape head in this case?

Note we have not explicitly covered the case where
δ(q,b) = (t,c,L) and q∈{qacc,qrej}

Or when we move R instead of L
Conclusion: well, if the current ID is u qb v
and q∈{qacc,qrej}, then no "next ID" is possible. We
say that the TM halts

10

Some Ways to Describe Turing
Machine Computation

1. Implementation-level description (high-level)
2. Instantaneous descriptions (IDs or configurations)

specifying snapshots of tape and read-write head position
as computation progresses.

3. Formal description (7-tuple)
4. Detailed state diagram.

We’ll discuss all 4 ways using Turing machine M1 in
textbook (p. 138, 139, 145) for language:

We’ll also discuss Turing machine M2 in textbook (p. 143,
144) for language:

}*}1,0{|#{ ∈= wwwB

}0|0{ 2 ≥= nA
n

11

Implementation-Level Description
}*}1,0{|#{ ∈= wwwB

Small Examples:

- Accepting input: 101#101ttL
- Rejecting input: 0101#1000ttL

12

Instantaneous Descriptions
(Snapshots) }*}1,0{|#{ ∈= wwwB

Sample Input: 011000#011000

13

8

Formal Description and Detailed
State Diagram }*}1,0{|#{ ∈= wwwB

Can 0,1 happen here?

14

Detailed State Diagram
}*}1,0{|#{ ∈= wwwB

Small Examples:

- Accepting input: 101#101ttL
- Rejecting input: 0101#1000ttL

Can 0,1 happen here?

15

Implementation-Level Description

}0|0{ 2 ≥= nA
n

}0|0{ 2 ≥= nA
n

16

Formal Description (7-tuple)
}0|0{ 2 ≥= nA

n

17

Detailed State Diagram
}0|0{ 2 ≥= nA

n

Note different way of
marking left end.

18

Instantaneous Descriptions
(IDs or configurations)

Sample Input: 0000

}0|0{ 2 ≥= nA
n

19

Detailed State Diagram
}0|0{ 2 ≥= nA

n

More Examples…

See Textbook Examples:
Example 3.11

Subtlety on detecting left end of tape.

Example 3.12 (element distinctness)

20

}1,, and |{ ≥=×= kjikjicbaC kji

}each for and *}1,0{each |###{# 21 jixxxxxxE jiil ≠≠∈= L

21

Language recognized by TM
Finally, we let `* be the transitive, reflexive
closure of `. So if α and β are IDs, the
statement α `* β means "the TM can go
from α to β in 0 or more steps"
The language recognized by M is
L(M) = { x∈Σ* | q0 x `* u qacc v for

some u,v∈Γ* } (strings that are accepted by M)

Translation?
Note x ∈ Σ*, not Γ*

22

TM language classes
Definition A language L is Turing-
recognizable if there exists a TM M such
that L = L(M).

Synonym: L is recursively enumerable,
abbreviated "r.e.“ (see Section 3.2)

Definition The class of all Turing-
recognizable languages is

Σ1 = { L ⊆ Σ* | L is Turing-recognizable }

The textbook does not assign a name like this; it
just says "class of TM-recognizable langs"
Beware: The class Σ1 is not an alphabet like Σ
The naming is unfortunate but better than some
of the alternatives

23

Turing-Recognizable Languages
ALL

FINEach point is
a language in
this Venn
diagram

REG

RPP

CFL

CFPPΣ1
Turing

Recognizable

24

Deciders
We've seen that when you start a TM with
an input x, it can do three distinct things:

Accept x
Reject x
Run forever without accepting or rejecting x

We call this "looping" -- meaning that the TM
runs forever. (The "loop" might not be so
simple, the point is it runs forever.)

Some TMs always accept or reject and
never loop on any input whatsoever. You
could easily write an example of one. A TM
with this property is called a decider.

A decider always halts on every input

25

Decidable languages
Definition A language is decidable if
there exists a decider TM M such that L =
L(M)

Synonyms: L is "computable" and "recursive"
It is in general not easy to tell if a language is
decidable or not

Definition The class of all Turing-
decidable languages is

Σ0 = { L ⊆ Σ* | L is Turing-decidable}
Note Σ0 (decidable) versus Σ1 (recognizable)
versus Σ (alphabet)

26

Turing-Decidable Languages
ALL

FINEach point is
a language in
this Venn
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1
Turing

Recognizable

Turing
Decidable

27

Decidable versus recognizable
Fact (obvious) Σ0 ⊆ Σ1

Every decider is automatically a recognizer too
Fact (not at all obvious) Σ0 ≠ Σ1

This means that there exists some language
H ∈ Σ1 - Σ0

H is a language that can be recognized by some
TM, but can't be recognized by any TM that
always halts!

Fact (not at all obvious) Σ1 ≠ ALL
This means that there exists some language
H2 ∈ ALL - Σ1

H2 is a language that can't even be recognized
by any TM

28

Ultimately…
ALL

FINEach point is
a language in
this Venn
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1
Turing

Recognizable

Turing
Decidable

H

H2

29

Reminder

The decidable languages: Σ0

The recognizable languages: Σ1

30

Closure properties of Σ0 and Σ1

Σ1 is closed under ∪,∩, ·, ∗, reversal
Proofs for ∪ and ∩ are similar to the NFA
constructions we used, if you use a 2-
tape TM (section 3.2)

Proof for reversal is also easy with a 2-
tape TM (section 3.2)

· and ∗ are somewhat harder

Not closed under complement

Σ0 is closed under all of these
operations and complement as well

31

Preview: a non-recognizable L

This all means that some L exists that
is not recognized by any TM

What does it look like?
Is it important?

YES, because of Church-Turing Thesis
Intuitive notion of algorithms = Turing
machine algorithms
To be defined and discussed in Section 3.3

	91.304 Foundations of (Theoretical) Computer Science
	Slide Number 2
	Turing machine syntax	
	Differences from Finite Automata
	Differences in input mechanism
	Turing machine computation
	Turing machine computation
	Turing machine computation
	Turing machine computation
	Some Ways to Describe Turing Machine Computation
	Implementation-Level Description�
	Instantaneous Descriptions (Snapshots)
	Slide Number 13
	Detailed State Diagram�
	Implementation-Level Description�
	Formal Description (7-tuple) �
	Detailed State Diagram�
	Instantaneous Descriptions �(IDs or configurations)
	Detailed State Diagram�
	More Examples…
	Language recognized by TM
	TM language classes
	Turing-Recognizable Languages
	Deciders
	Decidable languages
	Turing-Decidable Languages
	Decidable versus recognizable
	Ultimately…
	Reminder
	Closure properties of 0 and 1
	Preview: a non-recognizable L

