
1

91.304 Foundations of 
(Theoretical) Computer Science

Chapter 1 Lecture Notes (Section 1.4: Nonregular Languages)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2014

This work is licensed under the Creative Commons Attribution-ShareAlike License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, 
California 94305, USA.

mailto:dm@cs.uml.edu
http://creativecommons.org/licenses/by-sa/2.0/


2

Picture so far

ALL

FIN

Each point is 
a language in 
this Venn 
diagram

REG

{ 0101, ε }

0*(101)*



3

Where we are heading now…

ALL

FIN

Each point is 
a language in 
this Venn 
diagram

REG

RPP

B = { 0n 1n | n ≥ 0 }

{ 0101, ε }

0*(101)*



4

§1.4 Nonregular languages

For each possible language L of 
strings over Σ,
∅  ⊆ L.  So ∅ is the smallest language.  
And ∅ is regular
L ⊆  Σ*. So Σ* is the “largest” language of 
strings over Σ.  And Σ* is regular.

Yet there are languages in between
these two extremes that are not
regular



5

A nonregular language
B = { 0n 1n | n ≥ 0 } 

= { ε, 01, 0011, 000111, L }
is not regular.

Why?
Q: how many bits of memory would a DFA need 
in order to recognize B?
A: there appears to be no single number of bits 
that's big enough to work for every element of B.

Remember, the DFA needs to reject all strings 
that are not in B.



6

Other examples
C = { w∈{0,1}* | n0(w) = n1(w) }

Needs to count a potentially unbounded 
number of '0's... so nonregular

D = { w∈{0,1}* | n01(w) = n10(w) }
Needs to count a potentially unbounded 
number of '01' substrings... so ??

Need a technique for establishing 
nonregularity that is more formal 
and... less intuitive?



7

Proving nonregularity
To prove that a language is nonregular, you 
have to show that no DFA whatsoever
recognizes the language

Not just the DFA that is your best effort at 
recognizing the language

The pumping lemma can be used to do that
The pumping lemma says that every 
regular language satisfies the "regular 
pumping property" (RPP)

Given this, if we can show that a language like B 
doesn't satisfy the RPP, then it's not regular
B = { 0n 1n | n ≥ 0 }



8

Pumping lemma, informally
Roughly: "if a regular 
language contains any 'long' 
strings, then it contains 
infinitely many strings"
Start with a regular 
language and suppose that 
some DFA M=(Q,Σ,δ,q0,F) 
for it has |Q|=10 states.
What if M accepts some 
particular string s where 
s=c1c2Lc15 so that |s|=15?

q0



9

Pigeonhole principle
With 15 input characters, the machine will visit at 
most 16 states

But there are only 10 states in this machine
So clearly it will visit at least one of its states more 
than once

Let rpt be our name for the first state that is visited 
multiple times on that particular input s
Let acc be our name for the accepting state that s leads 
to, namely, δ*(q0,s) = acc

δ*(q,x) is the set of all states reachable in the machine 
after starting in state q and reading the entire string x

Let y be our name for the leftmost substring of s for 
which δ*(rpt, y)=rpt

Since there are no ε transitions in a DFA, a state being 
"visited multiple times" means that it read at least one 
character.  Therefore, |y| > 0



10

q0 ? L rpt ? L rpt ? L acc

s= c1 L ← y → L c15

sequence of states that 
M visits after reading
the characters below

>0

After reading c1L c10 (first 10 chars of s), M must have 
already been to state rpt and returned to it at least once... 
because there are only 10 states in M.

Of course the repetition could have been encountered 
earlier than 10 characters too...

≤10



11

q0 ? L rpt ? L rpt ? L acc

s= c1 L ← y → L c15

sequence of states that 
M visits after reading
the characters below

>0

Assigning new names to the pieces of s...

≤10



12

q0 ? L rpt ? L rpt ? L acc

s= ← x → ← y → ← z →

sequence of states that 
M visits after reading
the characters below

>0

Assigning new names to the pieces of s...

So s = xyz as shown above.

With these names, the other constraints can be written
|y| > 0
|xy| 

≤10

≤10



13

M accepts other strings too

Consider the string xz

q0 ? L rpt ? L rpt ? L acc

s= ← x → ← y → ← z →



14

M accepts other strings too

Consider the string xz
δ*(q0,x) = rpt
δ*(rpt,z) = acc (from previous slide)
So xz ∈ L(M) too

q0 ? L rpt ? L acc

s= ← x → ← z →



15

M accepts other strings too

Consider the string xyyz
δ*(q0,xy)=rpt  (from 2 slides ago)
δ* (rpt,y)=rpt  (from same previous result)
δ* (rpt,z)=acc  (from same previous result)
So xyyz∈ L(M) also

Apparently we can repeat y as many times as we 
want

q0 ? L rpt rpt rpt ? L acc

s= ← x → y y ← z →



16

p-regular-pumpable strings

Definition (not in textbook) A string s is 
said to be p-regular-pumpable in a 
language L ⊆  Σ* if there exist x,y,z ∈  Σ* such 
that 

1. s=xyz ("x,y,z are a decomposition of s")
2. |y|>0
3. |xy|≤ p
4. For all i ≥ 0,

x yi z ∈ L ("the y part of s can be 
pumped to produce other 
strings in the language")

It follows that s must be a member of L for it to be 
p-pumpable

The 15-character string s in the previous example 
was 10-regular-pumpable in L(M).

Is s also 15-regular-pumpable?



17

p-regular-pumpable languages

Definition A language L is p-regular-
pumpable if

for every s ∈ L such that |s|≥ p, 
the string s is p-pumpable in L
in other words, "every long enough 
string in L is pumpable"

Our previous example language was 
15-regular-pumpable

Is it also 10-regular-pumpable?



18

RPP(p) and RPP
Definition RPP(p) is the class of languages that are 
p-regular-pumpable.  In other words,
RPP(p) = { L⊆Σ* | L is p-regular-pumpable}

Definition RPP is the class of languages that are p-
regular pumpable for some p.  In other words,

Lots of notation and apparent complexity, but the idea 
is simple: RPP is the class of languages in which every 
sufficiently long string is pumpable



19

Pumping lemma
Theorem 1.70 (rephrased)  If L⊆Σ* is 

recognized by a p-state DFA, then 
L ∈ RPP(p)

Proof Just like our example, but use p 
instead of the constant 15 (or number 
of states = 10 in our example)

Corollaries
REG ⊆  RPP

Primary application 
of Pumping Lemma



20

Proving a language nonregular

First unravel these definitions, but it 
amounts to proving that L is not a 
member of RPP.  Then it follows that 
L isn't regular  

Proving that L isn't in RPP allows you to 
concentrate on the language rather than 
considering all possible proposed 
programs that might recognize it



21

Unraveling RPP: a direct rephrasing

Rephrasing L is a member of RPP if
There exists p≥0 such that

For every s∈L satisfying |s|≥ p, 
There exist x,y,z ∈ Σ* such that

1. s=xyz
2. |y|>0
3. |xy|≤ p
4. For all i ≥ 0,

x yi z ∈ L

(∃ p) (∀ s) (∃ x,y,z) (∀ i) !!!
Pretty complicated



22

Nonregularity proof by 
contradiction
Claim Let B = { 0n 1n | n ≥ 0 }.  Then B is not 

regular
Proof We show that B is not a member of RPP 

by contradiction.  
So assume that B ∈ RPP (and hope to reach a 

contradiction soon).  Then there exists p≥ 0 
associated with the definition in RPP.  

We let s = 0p 1p.  (Not the exact same 
variable as in the RPP property, but an 
example of one such possible setting of it.)  
Now we know that s ∈ B because it has the 
right form.



23

Proof continued
Now |s| = 2p ≥ p.  By assumption that B ∈  
RPP, there exist x,y,z such that

1. s=xyz   ( = 0p 1p, remember)
2. |y|>0
3. |xy|≤ p
4. For all i ≥ 0,

x yi z ∈ B

Part (3) implies that xy ∈ 0+ because the 
first p-many characters of s=xyz are all 0

So y consists solely of '0' characters
... at least one of them, according to (2)



24

Proof continued
But consider:

s = xyz = xy1z = 0p 1p (where we started)
y consists of one or more '0' characters
so xy2z contains more '0' characters than '1' 
characters.  In other words,

xy2z = 0p+|y| 1p

so xy2z      B = { 0n 1n | n ≥ 0 }.
This contradicts part (4)!!
Since the contradiction followed merely from the 
assumption that B∈RPP (and right and meet and true 
reasoning about which we have no doubt), that 
assumption must be wrong QED

∈



25

Observations
We needed (and got) a contradiction that was a 
necessary consequence of the assumption that B ∈
RPP and then relied on the Theorem 1.70 corollaries
RPP mainly concerns strings that are longer than p

So you should concentrate on strings longer than p...
even though p is a variable.  But clearly |0p1p|>p

In our example we didn't "do" much: after our initial 
choice of s and thinking about the implications we 
found a contradiction right away

Many other choices of s would work, but many don't, 
and even some that do work require more complex 
arguments—for example, s=0bp/2c+11bp/2c+1

Choosing s wisely is usually the most important thing



26

Game theory formulation

The direct (non-contradiction) proof 
of non-context-freeness can be 
formulated as a two-player game

You are the player who wants to 
establish that L is not in RPP
Your opponent wants to make it difficult 
for you to succeed
Both of you have to play by the rules



27

Game theory continued

The game has just four steps.
1. Your opponent picks p≥0
2. You pick s∈L such that |s|≥ p
3. Your opponent chooses x,y,z ∈  Σ*

such that s=xyz, |xy|>0, and |xy|≤ p
4. You produce some i ≥ 0 such that 

xyiz L∈



28

Game theory continued

If you are able to succeed through step 4, 
then you have won only one round of the 
game
To show that a language is not in RPP you 
must show that you can always win, 
regardless of your opponent's legal moves

Realize that the opponent is free to choose the 
most inconvenient or difficult p and x,y,z
imaginable that are consistent with the rules



29

Game theory continued

So you have to present a strategy for 
always winning — and convincingly 
argue that it will always win

So your choices in steps 2 & 4 have to 
depend on the opponent's choices in 
steps 1 & 3
And you don't know what the opponent 
will choose
So your choices need to be framed in 
terms of the variables p, x, y, z



30

Picture so far

ALL

FIN

Each point is 
a language in 
this Venn 
diagram

REG

RPP

B = { 0n 1n | n ≥ 0 }

{ 0101, ε }

0*(101)*


	91.304 Foundations of (Theoretical) Computer Science
	Picture so far
	Where we are heading now…
	§1.4 Nonregular languages
	A nonregular language
	Other examples
	Proving nonregularity
	Pumping lemma, informally
	Pigeonhole principle
	Slide Number 10
	Slide Number 11
	Slide Number 12
	M accepts other strings too
	M accepts other strings too
	M accepts other strings too
	p-regular-pumpable strings
	p-regular-pumpable languages
	RPP(p) and RPP
	Pumping lemma
	Proving a language nonregular
	Unraveling RPP: a direct rephrasing
	Nonregularity proof by contradiction
	Proof continued
	Proof continued
	Observations
	Game theory formulation
	Game theory continued
	Game theory continued
	Game theory continued
	Picture so far

