
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 1 Lecture Notes (Section 1.2: NFA’s)

David Martin
dm@cs uml edudm@cs.uml.edu

With some modifications by Prof. Karen Daniels
Slides also added from http://cis.k.hosei.ac.jp/~yukita/ in some places.

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Nondetermistic Finite AutomataNondetermistic Finite Automata

A nondeterministic finite automaton can be different
from a deterministic one in that

for any input symbol nondeterministic one can for any input symbol, nondeterministic one can
transit to more than one state.
epsilon transition (ε), which “consumes” no input
symbolssymbols

NFA and DFA stand for nondeterministic finite automaton
and deterministic finite automaton, respectively.
NFAs and DFAs a e eq all po e f l b t NFA adds NFAs and DFAs are equally powerful, but NFA adds
notational power that can simplify descriptions.

Example: L&P

2

variation on http://cis.k.hosei.ac.jp/~yukita/

Nondeterministic Finite Automata

Will relax two of these DFA rules:Will relax two of these DFA rules:
1. Each (state, char) input must produce

exactly one (state) outpute ac y o e (s a e) ou pu
2. Must consume one character in order to

advance state
The NFA accepts the input if there
exists any way of reading the input
that winds up in an accepting state that winds up in an accepting state
at the end of the string

Otherwise it rejects the input

3

Otherwise it rejects the input

Example: NFA N2

0 10,1

Note: no exiting
arrow for 0 or 1.

q3q1 q2
1 0,1 q4

0,1

Let language A consist of all strings over {0,1} containing a 1 in the third g g g { } g
position from the end. N2 recognizes A.

Note: Multiple choice on input 1 from state q1 makes this an NFA.

Later we show a DFA equivalent to this NFA using construction of Thm 1 39

4

Later we show a DFA equivalent to this NFA using construction of Thm. 1.39.

variation on http://cis.k.hosei.ac.jp/~yukita/

NFA N1

0,1 0,1

1 0 1

Note: no exiting
arrow for 1.

Note: no exiting
arrow for 0.

q3q1 q2
1 0,ε q4

Now introduce ε.
What language does this NFA accept?

5

variation on http://cis.k.hosei.ac.jp/~yukita/

NFA N1 Execution on input 010110
Source: Sipser Textbook

Note pictorial Note pictorial
“jump” on ε to
next state.
This varies
slightly from
transition
function
depiction on p.
54.

How does
N b h

6

N1 behave
on input
01001?

Ways to think of NFAs

NFA t t t i t d ill NFAs want to accept inputs and will
always take the most advantageous
alternative(s)alternative(s)

Because they will accept if there exists
any way to get to an accepting state at any way to get to an accepting state at
the end of the string
The quickest way there may be just one q y y j
of many ways, but it doesn’t matter

7

Ways to think of NFAs
fork() model

a a
a

fork() model
Input string is in a variable
fork() at every nondeterministic choice point

subprocess 1 (parent) follows first transition
subprocess 2 (child) follows second
subprocess 3 (child) follows third (if any), etc.p () (y),

A process that can’t follow any transition calls
exit() -- and gives up its ability to accept
A process that makes it through the whole string A process that makes it through the whole string
and is in an accepting state prints out “ACCEPT”

A single ACCEPT is enough

8

Parallel world and NFA

reject

accept

9

p

variation on http://cis.k.hosei.ac.jp/~yukita/

Syntax of DFA (repeat)

A deterministic finite automaton A deterministic finite automaton
(DFA) is a 5-tuple (Q,Σ,δ,q0,F) such that

1. Q is a finite set of statesQ s a te set o states
2. Σ is an alphabet
3. δ:Q×Σ →Q is the transition function
4 q ∈ Q is the start state4. q0∈ Q is the start state
5. F ⊆ Q is the set of accepting states

Usually these names are used but others Usually these names are used, but others
are possible as long as the role is clear

10

Syntax of NFA

A nondeterministic finite automaton A nondeterministic finite automaton
(NFA) is a 5-tuple (Q,Σ, δ,q0,F) such that

1. Q is a finite set of statesQ s a te set o states
2. Σ is an alphabet
3. δ:Q×(Σ ∪ {ε})→P(Q) is the transition function
4 q ∈ Q is the start state4. q0∈ Q is the start state
5. F ⊆ Q is the set of accepting states

Usually these names are used but others Usually these names are used, but others
are possible as long as the role is clear

11Note: Σε = Σ U {ε} (see p. 53)

NFA N1 (again) p. 54

}{1 Q

0,1 0,1

10
}1,0{ 2.

},,,,{ 1. 4321 qqqqQ
=Σ
=

ε

q3q1 q2

1 0,ε
q4

1

}{}{
},{}{

10

asgivenis3. 332

2111

qqq
qqqq

∅
∅
ε

δ

}{}{
}{

}{}{ asgiven is 3.

444

43

332

qqq
qq

qqq

∅
∅∅

∅δ
Note the use of
sets here in
contrast to DFA.

}.{ 5.
state.start theis 4.

}{}{

4

1

444

qF
q

qqq

=

12

variation on http://cis.k.hosei.ac.jp/~yukita/
Board work: Resolve transition table with Figure 1.29 for ε.

The Subset Construction

Th 1 39 F NFA M th Theorem 1.39 For every NFA M1 there
exists a DFA M2 such that
L(M) = L(M)L(M1) = L(M2).

Corollary 1.40 A language is REGular if
and only if some nondeterministic and only if some nondeterministic
finite automaton recognizes it.

13

The Subset Construction
Proof: Let N=(Q Σ δ q0 F) be the NFA and define the DFAProof: Let N (Q,Σ,δ,q0,F) be the NFA and define the DFA

M=(Q’,Σ,δ’, q0’,F’) as follows:
1. Q’ = P(Q).

Each state of the DFA records the set of states that Each state of the DFA records the set of states that
the NFA can simultaneously be in
Can compare DFA states for equality but also look
"inside" the state name to find a set of NFA state
namesnames

2. Define:
E(R) = {q|q is reachable from R via ε arrow(s)}

}Rf))((E|Q{)R(' δδ

Go to whatever states are reachable from the states
in R and reading the character a

}Rsomefor)),((E|Q{),R(' ∈∈∈= rarqqa δδ

14

in R and reading the character a

Remember: in an NFA,
δ: Q ×Σε→ P(Q) from def

The Subset Construction
3 q ’ = E({q })3. q0 = E({q0})
4. F’={R ∈ Q’ | R contains an accept state of N}

The effe t i th t the DFA kno ll t te th t e The effect is that the DFA knows all states that are
reachable in the NFA after reading the string so far.
If any one of them is accepting, then the current DFA
state is accepting too, otherwise it's not.state is accepting too, otherwise it s not.

If you believe this then that's all it takes to see that the
construction is correct So convince yourself with an construction is correct. So, convince yourself with an
example. QED

15

Example: NFA N2 (again)

0 10,1

q3q1 q2
1 0,1 q4

0,1

Let language A consist of all strings over {0,1} containing a 1 in the third g g g { } g
position from the end. N2 recognizes A.

No ε’s in this example.

16

variation on http://cis.k.hosei.ac.jp/~yukita/

A DFA equivalent to N20 0

qq q
0 0 qq010q000 q100

q110

101

1

0
001

1

q011q001 q101
1 q111

1

17
1

Variation on http://cis.k.hosei.ac.jp/~yukita/
Board work: Start with all 16
states, including unreachables.

Example 1.41 NFA N4 to DFA

1
b

ε
a

2 3a
a,b

ε

asexpressedbemaysetstates'DFAequivalentan
construct want to we,}}3{,1,},,{},3,2,1{{Given 4 =

DD
baN δ

}}.3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{2
asexpressedbemay set states .DFA equivalentan

}3,2,1{ ∅=

DD

18

variation on http://cis.k.hosei.ac.jp/~yukita/

The state diagram of D

φ {1} {2} {1,2}a,b a b
unreachable unreachable

φ
a,b

a
a

b bb

{3} {1 3} {2,3} {1,2,3}a
a

a

{3} {1,3} { , } { }
a

b

b

D i b k

19

variation on http://cis.k.hosei.ac.jp/~yukita/

Done in textbook.

Subset construction conclusion
Adding nondeterminism makes programs Adding nondeterminism makes programs
shorter but not able to do new things
Remember: regular languages are defined
to be those "recognized by a DFA"to be those recognized by a DFA
We now have a result that says that every
language that is recognized by an NFA is

l tregular too
So if you are asked to show that a language is
regular, you can exhibit a DFA or NFA for it and
rely on the subset construction theoremrely on the subset construction theorem
Sometimes questions are specifically about DFAs
or NFAs, though... pay attention to the precise
wording

20

g

Closure properties
The presence or absence of closure The presence or absence of closure
properties says something about how well a
set tolerates an operation
D fi iti L t S U b t i Definition. Let S ⊆ U be a set in some
universe U and ¯ be an operation on
elements of U. We say that S is closed elements of U. We say that S is closed
under ¯ if applying ¯ to element(s) of S
produces another element of S.

For example if ¯ is a binary operation For example, if ¯ is a binary operation
¯:U×U→U, then we're saying that
(∀ x∈S and y∈S) x ¯ y ∈ S

21

Closure properties illustrated

U
Applying the
¯ operation to
elements of S ¯

¯
elements of S
never takes
you ouside of
S.

S i l d

¯

S is closed
with respect
to ¯

This example

¯ ¯ ¯

S
s e a p e

shows unary
operations

~

Not closed under ~

22

More examples
L1={x∈{ 0 1 }* : |x| is a multiple of 3 } L1 {x∈{ 0,1 } : |x| is a multiple of 3 }

is closed under string reversal and
concatenation

L {x∈{0 1}*| the binary number x is a L3={x∈{0,1}*| the binary number x is a
multiple of 3 }

is also closed under string reversal and is also closed under string reversal and
concatenation, harder to see though

L4={x∈{a,b}* | x contains an odd # of ‘b’s
and an even # of ‘a’s}and an even # of a s}

is closed under string reversal
is not closed under string concatenation

23

Closure: higher abstraction
We will usually be concerned with closure of We will usually be concerned with closure of
language classes under language
operations

Previous examples were closure of sets Previous examples were closure of sets
containing non-set elements under various
familiar operations
We consider DFAs and NFAs to be programs and p g
we want assurance that their outputs can be
combined in desired ways just by manipulating
their programs (like using one as a subroutine
for the other)for the other)
Representative question: is REG closed under
(language) concatenation?

24

The regular operations
The regular operations on languages areThe regular operations on languages are
∪ (union)
· (concatenation)
∗ (Kleene star)∗ (Kleene star)

The name "regular operations" is not that
important

T b d th d " l " f hToo bad we use the word "regular" for so much
REG is closed under these regular
operations

That's why they're called "regular" operations
This does not mean that each regular language
is closed under each of these operations!

25

The regular operations

REG is closed under union: Theorem 1 25 REG is closed under union: Theorem 1.25
(using DFAs), Theorem 1.45 (using NFAs)
REG is closed under concatenation: REG is closed under concatenation:
Theorem 1.47 (NFAs)
REG is closed under ∗: Theorem 1.49
(NFAs)
Study these constructions!!
REG is also closed under complement,
intersection and reversal (not in book)

26

Theorem 1 45 The class of regular languages is closed Theorem 1.45 The class of regular languages is closed
under the union operation.

N
N1

N

ε

N2

ε

2

27

variation on http://cis.k.hosei.ac.jp/~yukita/

Theorem 1 47 The class of regular languages is closed Theorem 1.47 The class of regular languages is closed
under the concatenation operation.

N1
N2N1 2

N ε

ε

28

variation on http://cis.k.hosei.ac.jp/~yukita/

Theorem 1 24 The class of regular languages is closed Theorem 1.24 The class of regular languages is closed
under the star operation.

N

N
ε εN1

ε

ε

29

http://cis.k.hosei.ac.jp/~yukita/

