
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 1 Lecture Notes (Section 1.1: DFA’s)

David Martin
dm@cs uml edudm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Chapter 1: Regular Languages

Si l d l f t tiSimple model of computation
Input a string, and either accept or

j t itreject it
Models a very simple type of function, a
predicate on strings:predicate on strings:

f : Σ* → {0,1}

See example of a state-transition See example of a state transition
diagram

2

Syntax of DFA

A deterministic finite automaton (DFA)A deterministic finite automaton (DFA)
is a 5-tuple (Q,Σ,δ,q0,F) such that

1. Q is a finite set of statesQ s a te set o states
2. Σ (“sigma”) is an alphabet (finite set)
3. δ:Q×Σ→Q (“delta”) is the transition function
4 q ∈ Q (“q naught”) is the start state4. q0∈ Q (“q naught”) is the start state
5. F ⊆ Q is the set of accepting states

Usually these names are used but others Usually these names are used, but others
are possible as long as the role is clear

3

DFA syntax

It i d t i i ti b f It is deterministic because for every
input (q,c), the next state is a
uniquely determined member of Quniquely determined member of Q.

4

DFA computation
This definition is different from but This definition is different from but
equivalent to the one in the text
Let M=(Q,Σ,δ,q0,F) be a DFA. We define
the extended transition function

δ*:Q×Σ*→ Q
inductively as follows. For all q∈ Q, inductively as follows. For all q∈ Q,

δ*(q,ε) = q.
If w∈Σ* and c∈Σ, let

δ*(q,wc) = δ(δ*(q,w),c)
According to this definition, δ*(q,x) is the
state of the machine after starting in

5

state of the machine after starting in
state q and reading the entire string x

See example

Measuring DFA space complexity

Space complexity: the amount of memory Space complexity: the amount of memory
used

But a DFA has no extra memory; it only ut a as o e t a e o y; t o y
remembers what state it is in
Can’t look back or forward
S DFA l th t f So a DFA always uses the same amount of
memory, namely the amount of memory
required to remember what state it’s in

Needs to remember current element of Q
Can write down that number in log2 |Q| bits

6

Language recognized by DFA

The language recognized by the The language recognized by the
DFA M is written L(M) and defined as

L(M)={x∈Σ* | δ*(q0,x) ∈ F}() (q0)

Think of L() as an operator that turns
a program into the language it p g g g
specifies

We will use L() for other types of
hi d tmachines and grammars too

Example 1.7, textbook p. 37

7

Example
Let L ={x∈{0 1}*| either x is the Let L2={x∈{0,1} | either x is the
empty string, or the binary number x
is a multiple of 2 } and build a DFA is a multiple of 2 } and build a DFA
M2 such that L(M2) = L2

Remember this means L(M2) ⊆ L2 and L2Remember this means L(M2) ⊆ L2 and L2
L2 ⊆ L(M2)

This is Example 1.9 from textbook, p. 38This is Example 1.9 from textbook, p. 38

8

Definition of regular languages

A language L is regular if there A language L is regular if there
exists a DFA M such that L = L(M)
The class of regular languagesThe class of regular languages
over the alphabet Σ is called REG and
defined

REG { L * | L i l } REG = { L ⊆ Σ* | L is regular }
= { L(M) | M is a DFA over Σ }

Now we know 4 classes of languages:
∅, FIN, REG, and ALL (see Lecture 0)

9

Picture so far

ALLEach point is
a language in
this Venn this Venn
diagram

REG

Proof that FIN REG
will come later after
we introduce closure

⊂

FINREG = L(DFA)

REG we introduce closure
properties.

≠ FIN Is there a
language
out here?

10"the class of languages generated by DFAs"

Problems
For all k≥1, let Ak={0kn | n≥0}. Prove that For all k≥1, let Ak {0 | n≥0}. Prove that
(∀ k≥1) Ak ∈ REG

Solution is a scheme, not a single DFA
(Harder) Build a DFA for L ={x∈{0 1}*| the (Harder) Build a DFA for L3={x∈{0,1} | the
binary number x is a multiple of 3 } similar
to Example 1.13
Build a DFA for L ={x∈{a b}* | x does not Build a DFA for L3’={x∈{a,b} | x does not
contain 3 consecutive ‘b’s}
Build a DFA for L4={x∈{a,b}* | x contains
an odd # of ‘a’s and an even # of ‘b’s}
homework from 2009

11

Is REG reasonable?
We should be able to combine computations We should be able to combine computations
as subroutines in simple ways

logical OR (A ∪ B) }or |{ BxAxxBA ∈∈=∪ example
logical AND (A B)
concatenation (A · B) and star (A*)

hard to prove!! motivation for NFA

homework 2010∩

hard to prove!! motivation for NFA
complement (Ac) Problem 1.14 in textbook
reversal (AR) homework 2010
All above are easy to do as logic circuits

Closure under these language operations

12

