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Chapter 1: Regular Languages

Si l  d l f t tiSimple model of computation
Input a string, and either accept or 

j t itreject it
Models a very simple type of function, a 
predicate on strings:predicate on strings:

f : Σ* → {0,1}

See example of a state-transition See example of a state transition 
diagram
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Syntax of DFA

A deterministic finite automaton (DFA)A deterministic finite automaton (DFA)
is a 5-tuple (Q,Σ,δ,q0,F) such that

1. Q is a finite set of statesQ s a te set o states
2. Σ (“sigma”) is an alphabet  (finite set)
3. δ:Q×Σ→Q (“delta”) is the transition function
4 q ∈ Q (“q naught”) is the start state4. q0∈ Q (“q naught”) is the start state
5. F ⊆  Q is the set of accepting states

Usually these names are used  but others Usually these names are used, but others 
are possible as long as the role is clear
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DFA syntax

It i  d t i i ti  b  f   It is deterministic because for every 
input (q,c), the next state is a 
uniquely determined member of Quniquely determined member of Q.
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DFA computation
This definition is different from but This definition is different from but 
equivalent to the one in the text
Let M=(Q,Σ,δ,q0,F) be a DFA.  We define 
the extended transition function

δ*:Q×Σ*→ Q
inductively as follows.  For all q∈ Q, inductively as follows.  For all q∈ Q, 

δ*(q,ε) = q.
If w∈Σ* and c∈Σ, let

δ*(q,wc) = δ(δ*(q,w),c)
According to this definition, δ*(q,x) is the 
state of the machine after starting in 
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state of the machine after starting in 
state q and reading the entire string x

See example



Measuring DFA space complexity 

Space complexity: the amount of memory Space complexity: the amount of memory 
used

But a DFA has no extra memory; it only ut a as o e t a e o y; t o y
remembers what state it is in
Can’t look back or forward
S   DFA l  th   t f So a DFA always uses the same amount of 
memory, namely the amount of memory 
required to remember what state it’s in

Needs to remember current element of Q
Can write down that number in log2 |Q| bits
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Language recognized by DFA

The language recognized by the The language recognized by the 
DFA M is written L(M) and defined as

L(M)={x∈Σ* | δ*(q0,x) ∈ F}( ) (q0 )

Think of L() as an operator that turns 
a program into the language it p g g g
specifies

We will use L() for other types of 
hi  d  tmachines and grammars too

Example 1.7, textbook p. 37
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Example
Let L ={x∈{0 1}*| either x is the Let L2={x∈{0,1} | either x is the 
empty string, or the binary number x 
is a multiple of 2 } and build a DFA is a multiple of 2 } and build a DFA 
M2 such that L(M2) = L2

Remember this means L(M2) ⊆ L2  and L2Remember this means L(M2) ⊆ L2  and L2
L2 ⊆  L(M2) 

This is Example 1.9 from textbook, p. 38This is Example 1.9 from textbook, p. 38
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Definition of regular languages

A language L is regular if there A language L is regular if there 
exists a DFA M such that L = L(M)
The class of regular languagesThe class of regular languages
over the alphabet Σ is called REG and 
defined

REG  { L * | L i  l  } REG = { L ⊆  Σ* | L is regular } 
= { L(M) | M is a DFA over Σ }

Now we know 4 classes of languages: 
∅, FIN, REG, and ALL (see Lecture 0)
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Picture so far

ALLEach point is 
a language in 
this Venn this Venn 
diagram

REG

Proof that FIN     REG    
will come later after 
we introduce closure 

⊂

FINREG = L(DFA)

REG we introduce closure 
properties.

≠ FIN Is there a 
language 
out here?
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Problems
For all k≥1, let Ak={0kn | n≥0}.  Prove that For all k≥1, let Ak {0 | n≥0}.  Prove that 
(∀ k≥1) Ak ∈ REG

Solution is a scheme, not a single DFA
(Harder) Build a DFA for L ={x∈{0 1}*| the (Harder) Build a DFA for L3={x∈{0,1} | the 
binary number x is a multiple of 3 } similar 
to Example 1.13
Build a DFA for L ={x∈{a b}* | x does not Build a DFA for L3’={x∈{a,b}  | x does not 
contain 3 consecutive ‘b’s}
Build a DFA for L4={x∈{a,b}* | x contains 
an odd # of ‘a’s and an even # of ‘b’s} 
homework from 2009
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Is REG reasonable?
We should be able to combine computations We should be able to combine computations 
as subroutines in simple ways

logical OR (A ∪ B) }or  |{ BxAxxBA ∈∈=∪ example
logical AND (A    B) 
concatenation (A · B) and star (A*)

hard to prove!! motivation for NFA

homework 2010∩

hard to prove!! motivation for NFA
complement (Ac) Problem 1.14 in textbook
reversal (AR) homework 2010
All above are easy to do as logic circuits

Closure under these language operations
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