91.304 Foundations of (Theoretical) Computer Science

Chapter 1 Lecture Notes (Section 1.1: DFA's)

David Martin dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/bysa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Chapter 1: Regular Languages

- Simple model of computation
- Input a string, and either accept or reject it
 - Models a very simple type of function, a predicate on strings:
 f: Σ* → {0,1}
 - See example of a state-transition diagram

Syntax of DFA

- □ A deterministic finite automaton (DFA) is a 5-tuple ($Q, \Sigma, \delta, q_0, F$) such that
 - 1. Q is a *finite* set of states
 - **2.** Σ ("sigma") is an alphabet (finite set)
 - **3**. $\delta: Q \times \Sigma \rightarrow Q$ ("delta") is the transition function
 - **4**. $q_0 \in Q$ ("q naught") is the start state
 - 5. $F \subseteq Q$ is the set of accepting states
- Usually these names are used, but others are possible as long as the role is clear

DFA syntax

It is deterministic because for every input (q,c), the next state is a uniquely determined member of Q.

DFA computation

- This definition is different from but equivalent to the one in the text
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. We define the *extended transition function* $\delta^*: Q \times \Sigma^* \to Q$

inductively as follows. For all $q \in Q$,

 $\delta^*(q,\varepsilon) = q.$ If $w \in \Sigma^*$ and $c \in \Sigma$, let

 $\delta^{*}(q,wc) = \delta(\delta^{*}(q,w),c)$

According to this definition, δ* (q,x) is the state of the machine after starting in state q and reading the entire string x 5
 See example

Measuring DFA space complexity

- Space complexity: the amount of memory used
 - But a DFA has no extra memory; it only remembers what state it is in
 - Can't look back or forward
 - So a DFA always uses the same amount of memory, namely the amount of memory required to remember what state it's in
 - Needs to remember current element of Q
 - \Box Can write down that number in $\log_2 |Q|$ bits

Language recognized by DFA

- □ The **language recognized by** the DFA M is written L(M) and defined as L(M) = { $x \in \Sigma^* | \delta^*(q_0, x) \in F$ }
- Think of L() as an operator that turns a program into the language it specifies

7

- We will use L() for other types of machines and grammars too
- Example 1.7, textbook p. 37

Example

Let $L_2 = \{x \in \{0,1\}^* | \text{ either } x \text{ is the} \}$

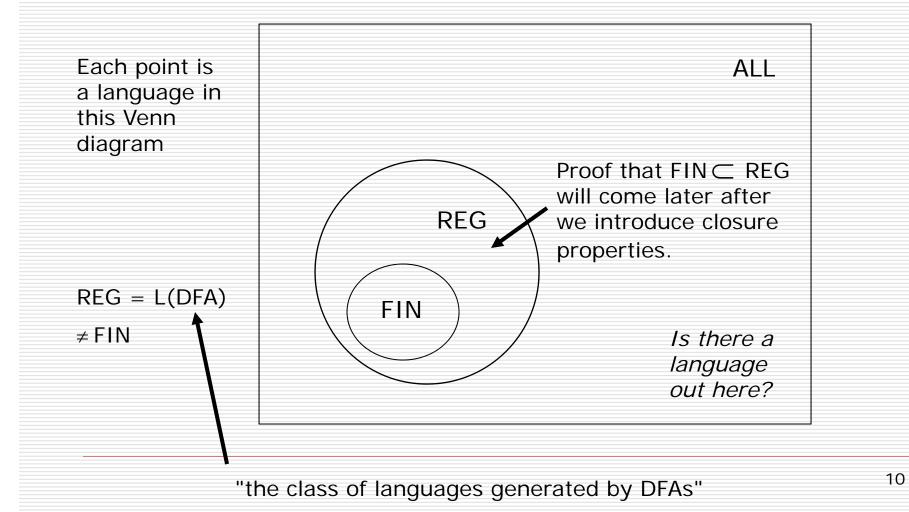
empty string, or the binary number x is a multiple of 2 } and build a DFA M_2 such that $L(M_2) = L_2$ Remember this means $L(M_2) \subseteq L_2$ and L_2 $L_2 \subseteq L(M_2)$

This is Example 1.9 from textbook, p. 38

Definition of regular languages

- A language L is regular if there exists a DFA M such that L = L(M)
- □ The class of regular languages over the alphabet Σ is called REG and defined REG = { L ⊆ Σ^* | L is regular }
 - = { L(M) | M is a DFA over Σ }
- Now we know 4 classes of languages: Ø, FIN, REG, and ALL (see Lecture 0)

Picture so far



Problems

- □ For all k≥1, let $A_k = \{0^{kn} \mid n \ge 0\}$. Prove that (∀ k≥1) $A_k \in REG$
- Solution is a scheme, not a single DFA
 (Harder) Build a DFA for L₃={x∈{0,1}*| the binary number x is a multiple of 3 } similar to Example 1.13
- □ Build a DFA for L_{3'}={x∈{a,b}* | x does not contain 3 consecutive 'b's}
- □ Build a DFA for L₄={x∈{a,b}* | x contains an odd # of 'a's and an even # of 'b's} homework from 2009

Is REG reasonable?

- We should be able to combine computations as subroutines in simple ways
 - logical OR (A ∪ B) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ example
 - logical AND (A \cap B) homework 2010
 - concatenation (A · B) and star (A*)
 - □ hard to prove!! *motivation for NFA*
 - complement (A^c) Problem 1.14 in textbook
 - reversal (A^R) homework 2010
 - All above are easy to do as logic circuits
- Closure under these language operations