91.304 Foundations of
(Theoretical) Computer Science

Chapter 1 Lecture Notes (Section 1.1: DFA’S)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.

‘ @ \ To view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Chapter 1: Regular Languages

Simple model of computation

Input a string, and either accept or
reject it
B Models a very simple type of function, a

predicate on strings:
f:2" - {0,1}

B See example of a state-transition
diagram

Syntax of DFA

A deterministic finite automaton (DFA)
Is a 5-tuple (Q,X,5,q,,F) such that
1. Q is a finite set of states

2. 2 (“sigma”) is an alphabet (finite set)
3. 0:Qx2—Q (“delta”) is the transition function

4. go€ Q (“gq naught”) is the start state
5. F CQ is the set of accepting states

B Usually these names are used, but others
are possible as long as the role is clear

DFA syntax

It Is deterministic because for every
Input (g,c), the next state iIs a
uniquely determined member of Q.

DFA computation

This definition is different from but
equivalent to the one in the text
Let M=(Q,%,9,q,,F) be a DFA. We define
the extended transition function
O :QxX"— Q
iInductively as follows. For all ge Q,
6°(9,¢) = Q.
If weX™ and ceZ, let
6"(g,wc) = 8(5°(q,w),c)

According to this definition, 6" (g,x) is the
state of the machine after starting In
I | g | | g 5

B See example

Measuring DFA space complexity

Space complexity: the amount of memory
used

B But a DFA has no extra memory; it only
remembers what state it is in

B Can't look back or forward

B So a DFA always uses the same amount of
memory, namely the amount of memory
required to remember what state it’s in

[Needs to remember current element of Q
[1 Can write down that number in log, |Q] bits

Language recognized by DFA

The language recognized by the

DFA M Is written L(M) and defined as
L(M)={xeX™ | 6°(qp,X) € F}

Think of L() as an operator that turns
a program into the language it
specifies

B We will use L() for other types of
machines and grammars too

Example 1.7, textbook p. 37

Example

Let L,={xe{0,1}"| either x is the

empty string, or the binary number X

IS a multiple of 2 } and build a DFA

M, such that L(M,) = L,

B Remember this means L(M,) C L, and L,
L, CL(My)

B This is Example 1.9 from textbook, p. 38

Definition of regular languages

A language L is regular If there
exists a DFA M such that L = L(M)

The class of regular languages
over the alphabet X is called REG and
defined _
REG={LCX"|Lisregular }
={L(M) | Mis aDFA over X }

Now we know 4 classes of languages:
0, FIN, REG, and ALL (see Lecture 0)

Picture so far

Each point is
a language in
this Venn
diagram

REG = L(DFA)
#FIN

ALL

Proof that FINC REG
will come later after
REG we introduce closure

properties.

Is there a
language
out here?

"the class of languages generated by DFAs"

10

Problems

For all k>1, let A.={0“" | n>0}. Prove that
(V k>1) A, € REG

B Solution is a scheme, not a single DFA
(Harder) Build a DFA for L —{XE{O 1}°| the

binary number x is a multiple of 3 } similar
to Example 1.13

Build a DFA for Ly={xe{a,b}" | x does not

contain 3 consecutive ‘b’s}
Build a DFA for L,={xe{a,b}" | x contains

an odd # of ‘a’s and an even # of ‘b’s}
homework from 2009

11

Is REG reasonable?

We should be able to combine computations

as subroutines in simple ways
B logical OR (AU B) AuB={x|xe Aor xe B} example

B |ogical AND (A~ B) homework 2010
B concatenation (A - B) and star (A")

[l hard to prove!l motivation for NFA
B complement (A°) Problem 1.14 in textbook

B reversal (AR) homework 2010
B All above are easy to do as logic circuits

Closure under these language operations

12

