
Processes

• In most contemporary Operating Systems such
as Windows and Linux/UNIX, the unit of
management is called a process

• A process is a resource container
– Depending on the specific operating system, a

process will have a set of defining attributes
– At any given moment, the collection of processes

in a system completely defines the system
• All computations must be done in the context of a

process

Processes (cont’d)

• While processes on various systems share
much more in common than in difference, we
will focus on the process model used in Linux

• A Linux process is characterized by many
attributes, but foremost among these are:
– An executable program
– One or more threads that can run the program
– An address space to contain all process memory

objects (i.e. text, data, stack, etc.)

A Linux Process Tree

PID 0
kernel proc

PID 1
systemd

PID 2
kthreadd

PID 517
udevd

PID 918
bluetoothd

PID 972
sshd

PID 5
kworker

PID 11
watchdog

PID 13
ksoftirqd

PID 8341
sshd

PID 8345
bash

PID 3882
ps

$ ps

PID 8345 control terminal
Inherited through hierarchy

stderr 2

stdin 0

stdout 1

ch 0, 1, 2

TCP port 22

Process Address Space

• Each memory object is a contiguous range of bytes within the
address space

• The size of the address space is limited by the CPU architecture and
the operating system version

• In a 32 bit Linux system on an x86 processor, the user default space
is 3 GB (it’s 128 TB in a 64 bit x86 system)

Threads
• The executable (schedulable) elements in a Linux system
• Each thread in the system is uniquely contained by some

process
– Each user thread is contained by some user PID
– Each kernel thread is contained in PID 0

• When a new process is created, it is populated by exactly
one executable thread, known as the Initial Thread (IT) of
the new process

• The IT of a process can create new threads only within its
own process

• While the IT must create the second thread in a process,
any subsequent threads can then create new threads, but
only within their own process

switch (int pid = fork()){
 case -1: perror(“fork failed “);
 exit(1);
 case 0: printf(“child alive\n”);
 execl(“./myprog”, “myprog”, NULL);
 default: printf(“created PID %d \n”, pid);
} // end switch

 progA code

 progA data

 IT stack

PID X

progA

PID Y

progA

 progA code

 progA data

 IT stack

Parent executes this case

Child executes this case

PID Y

myprog

 myprog code

 myprog data

 main IT stack Child execl

fork creates
child

PID Y

myprog

 myprog code

 myprog data

 main IT stack
PID Y

myprog

The new child program myprog executes from
the first statement in its main() function.

If the new program executes the following statement:

 pthread_create(&tid_id, NULL, th_fun1, NULL);

a new stack will be mapped into the address space

 myprog code

 myprog data

 main IT stack

th_fun1 stack

pthread_create

Thread States and Transitions

Thread Access Example

• A system call made by a thread in PID x is:
int channel = open(“/usr/faculty/bill/mmap_rw_var.c”, O_RDWR, 0);

• The system call succeeds and returns a valid channel to read and write
• A second call made by a thread in PID x is:

int channel = open(“/usr/faculty/bill/malloc_th.c”, O_RDWR, 0);

• This call fails, since the calling process is the owner, and owner
permissions don’t allow WRITE, even though group and other do

PID x
myprog

RUID == EUID == bill
RGID == EGID == fac
WD: /usr/faculty/bill

[bill@mich-fc17-126 bill]$ pwd
/usr/faculty/bill
[bill@mich-fc17-126 bill]$ ls -l
total 48
-rw-r--r--. 1 bill fac 20483 Aug 6 11:33 mmap_rw_var.c
-r--rw-rw-. 1 bill fac 22097 Aug 6 11:34 malloc_th.c

UID match

	Processes
	Processes (cont’d)
	A Linux Process Tree
	Process Address Space
	Threads
	Slide Number 6
	Slide Number 7
	Thread States and Transitions
	Thread Access Example

