Altering the Control Flow

Up to Now: two mechanisms for changing control flow:
m Jumps and branches
m Call and return using the stack discipline.
m Both react to changes in program state.

Insufficient for a useful system

m Difficult for the CPU to react to changes in system state.
® data arrives from a disk or a network adapter.
® [nstruction divides by zero
® User hits ctl-c at the keyboard
® System timer expires

System needs mechanisms for “exceptional control
flow”

Exceptional Control Flow

m Mechanisms for exceptional control flow exists at all levels
of a computer system.

Low level Mechanism

m exceptions
® change in control flow in response to a system event (i.e.,
change in system state)

m Combination of hardware and OS software

Higher Level Mechanisms
m Process context switch
m Signals
m Nonlocal jJumps (setymp/longjmp)

m Implemented by either:
® OS software (context switch and signals).
® C language runtime library: nonlocal jumps.

System context for exceptions

Processor

KeyboardI ‘MouseI‘ModemI ‘ Printer I

Interrupt
controller

Keyboard Serial port Parallel port

controller controller controller

IDE disk

controller

Local/lO Bus

Video
adapter

Network
adapter

SCSI
controller

SCSI bus

‘ Displa I ‘Networkl
disk || COROM. -

Exceptions

An exception is a transfer of control to the OS in response
to some event (i.e., change in processor state)

User Process OS
event —— current § exception .
next exception processing
by exception handler
exception
return (optional)

Interrupt Vectors

Exception

numbers
m Each type of event has a

code for unigue exception number k
exception handler 0 = Index into jump table (a.k.a.,
interrupt :
Vectop code for Interrupt vector)
exception handler 1
0

m Jump table entry k points to

¢ _~ . .
1 o code for a function (exception
2 L exception handler 2 handler).
n-1 o __ m Handler k is called each

time exception k occurs.

code for
exception handler n-1

EFLAGS Register Physical Address | Code, Data ar
| | Linear Address Stack Segment
Control Registers T Task-State
CR4 Segment Selector Segment (TS5) Task
CR3 -~ > T F = = ™ T Code
CR2 [Register | [— & — -:-?—‘
CR1 Lo | gl :3Stt:3 5
- CRO Global Descriptor | 2
Task Register Table (GDT)
I | -
| Segment Sel_ | — == Seg. Desc. Ille;rrup—t Handler
Current- — __Qc:nde |
Interrupt [TSS Seg. Sel.} — == TSS Desc. TSS | | Stack
“ector = 5
Interrupt Descriptor |r T ed. Lot Task-State
Table (IDT) | r->[TSSDese — Segment (TSS) __ Task
nterrupt Gat o F— - *E:—‘Gde
nterrup ater — — - | a1 -
256 vectors % ! LDT Desc. . _F_Data
Stack
max Task Gate | ——-—— -
[GDTR |
| Trap Gate F— -~) .
: Local Descriptor Exception Handler
v Table (LDT) = |
| T] _Illgggent— — _]EDEdtzcl-c
IDTR Call-Gate L | Seqg. Desc.
[T Segment Selector = I_
| F — | CallGate —|—— o Protected Procedure
LDTR |-= Current- — _-I,:T,ode |
TS5 I_ Stack
Linear Address Space Linear Address
| Dir | Table | Oiffset |
Linear Addr. Page Directory FPage Table Page
Physical Addr.
Pqg. Dir. Entry Pg. Thl. Entry
P —|—> L

|:| 1

*Physical Address

This page mapping example is for 4-KByite pages
and the normal 32-bit physical address size.

s191s169y |9A97 WBl1SAS 98X08

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor
m Indicated by setting the processor’s interrupt pin
m handler returns to “next” instruction.

Examples:

m |/O interrupts
® hitting ctl-c at the keyboard
® arrival of a packet from a network
® arrival of a data sector from a disk

m Hard reset interrupt
® hitting the reset button

m Soft reset interrupt
® hitting ctl-alt-delete on a PC

Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:

m Traps
® Intentional
® Examples: system calls, breakpoint traps, special instructions
® Returns control to “next” instruction

m Faults
® Unintentional but possibly recoverable

® Examples: page faults (recoverable), protection faults
(unrecoverable).

® Either re-executes faulting (“current”) instruction or aborts.

m Aborts
® unintentional and unrecoverable

® Examples: parity error, machine check.
® Aborts current program

Trap Example

Opening a File
m User calls open(filename, options)
0804d070 < libc open>:

804d082: cd 80 int $0x80
804d084: 5b pop %ebx

® Function open executes system call instruction 1Int
m OS must find or create file, get it ready for reading or writing

m Returns integer file descriptor
User Process OS

int | exception

pop ‘N Open file
return

-9- v

Fault Example #1

Memory Reference
m User writes to memory location
m That portion (page) of user’s memory
IS currently on disk

int a[1000];
main O

1
}

a[500] = 13;

80483b7: c7 05 10 9d 04 08 0Od movl

$0xd,0x8049d10

m Page handler must load page into
physical memory
m Returns to faulting instruction

m Successful on second try

OS

User Process

page fault

event ——— movl

return

—-10—

i

Create page and load
into memory

Fault Example #2 "
?ain O
Memory Reference , a[5000] = 13;

m User writes to memory location
m Address is not valid

80483b7: c7 05 60 e3 04 08 0Od movl $0xd,0x804e360

m Page handler detects invalid address

m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”
User Process OS

page fault |

event ——— nov
Detect invalid address

— > Signal process

—11 -

Processes

Def: A process is an instance of a running program.
m One of the most profound ideas in computer science.
m Not the same as “program” or “processor”

A process provides each program with two key
abstractions:

m Logical control flow

® Each thread of a process seems to have exclusive use of a
CPU.

m Private address space
® Each process seems to have exclusive use of main memory.

How are these lllusions maintained?
m Process thread executions are interleaved (multitasking)
m Address spaces are managed by a virtual memory system

- 12 —

Thread States and Transitions

DISPATCH

PREEMPT

WAKEUP

fork()

~ 13—

Threads

The executable (schedulable) elements in a Linux system

Each thread in the system is uniquely contained by some
process

m Each user thread is contained by some user PID
m Each kernel thread is contained in PID O

When a new process is created, it is populated by exactly
one executable thread, known as the Initial Thread (IT) of

the new process

The IT of a process can create new threads only within its
OWn process

While the IT must create the second thread in a process, any
subsequent threads can then create new threads, but
only within their own process

— 14—

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel

m Important: the kernel is not a separate process, but rather
runs as part of some thread in some user process

Control flow passes from one thread in a process to
another thread in the same or a different process via
a context switch.

Process B
thread

Process A
thread

user code

kernel code } context switch

user code

kernel code

} context switch

- 15—

Fork: Creating new processes

int fork(void)

m creates a new process (child process) that is identical to the
calling process (parent process)

m returns O to the child process
m returns child’s pid to the parent process

It (fork(Q == 0) {

printf(""hello from child\n™);
} else {

printf("hello from parent\n");

Fork is interesting
(and often confusing)
because it is called

} once but returns twice

—16 —

switch (int pid = fork()){
case -1: perror(“fork fairled);
exit(l); _—
case 0: printf(“child alive\n™); <
execl(*““./myprog”, “myprog’, NULL); |
default: printf(“created PID %d \n”, pid); <
} // end switch

I 1 Parent executes this case

progA code
I I
progA data _ .
I I Child executes this case
IT stack
fork creates
child
progA code myprog code
I | 1 |
progA data PID Y myprog data:
! ! Child execl)
main IT stack
IT stack > myprog

17 -

Fork Example #1

Key Points

m Parent and child both run same code
® Distinguish parent from child by return value from fork

m Child inherits a copy-on-write (COW) version of parent
® Including all parent open file descriptors (stdin, stdout, etc.)
® Relative ordering of parent/child print statements undefined

void forkl()

{
Int x = 1;
pid _t pid = fork();
1T (pid == 0) {
prlntf(‘Chilld has x = %d\n", ++x);
} else {
printf("'Parent has x = %d\n", --X);
+

printf("'Bye from process %d with x = %d\n", getpid(), X);

- 18—

~ 19—

CS

CS

mercury

CS

Some fork_test runs

bill@cs3:~/cs305demo$.

Parent has x = 0

Bye from process 24697
Child has x = 2

Bye from process 24698

bill@cs3:~/cs305demo$
Child has x = 2

Parent has x = 0

Bye from process 24700
Bye from process 24699

-bash-4.1% ./fork_test
Parent has x = 0

Bye from process 10279
Child has x = 2

Bye from process 10280

bill@cs3:~/cs305demo$
Parent has x = 0
Child has x = 2

Bye from process 24350 wit

Bye from process 24351

/Tork_test
with x = 0
with x = 2
./Tork _test
with x = 2
with x = 0

with x = 0
with X = 2
./Tork_ test

ith x = 0
with X = 2

Fork Example #2

Key Points

m Both parent and child can continue forking

void fork2()

{
printf(""'LO\n"");
fork(Q);
printf(''L1\n"");
fork(Q);
printf(''Bye\n"");

LO

Bye
L1 | Bye
Bye
L1 | Bye

—20—

exLt: Destroying Process

voild exit(int status)

—21—

m exits a process
® Normally return with status O

m atexit() registers functions to be executed upon exit

void cleanup(void) {
printf('cleaning up\n");
¥

void forke() {
atexit(cleanup);
fork(Q);
ex1t(0);

}

Zombies

ldea

m When process terminates, still consumes system resources
® Various tables maintained by OS

m Called a “zombie”
® Living corpse, half alive and half dead

Reaping
m Performed by parent on terminated child
m Parent is given exit status information
m Kernel discards process

What if Parent Doesn’t Reap?

m If any parent terminates without reaping a child, then child
will be reaped by Init process

m Only need explicit reaping for long-running processes
® E.g., shells and servers
— 22 —

wa LE: Synchronizing with children

int walt(int *child _status)

m suspends current process until one of its children
terminates

m return value is the pid of the child process that terminated

mif child status !'= NULL ,then the object it points to
will be set to a status indicating why the child process
terminated

Declare a typedef for the exit status information returned
from thewairt() call (p1d = wart(int *status))

typedef union{
INt exit_status;
struct{
unsigned sig_ num:7;
unsigned core_dmp:1;
unsigned exit _num:8;
}parts;
JLE Wairt Status

—23—

wa LE: Synchronizing with children

void fork9() {
int child _status;

iIT (fork(Q == 0) {
printf(""HC: hello from child\n');
}
else {
printfF(""HP: hello from parent\n™);
waitt(&child status);
printf(C"'CT: child has terminated\n');
}
printf("'Bye\n'"); HC Bye
exit(); 1

¥ HP CT Bye

—24 —

exeec: Running new programs

int execl(char *path, char *arg0, char *argl, .., (char *)NULL)
m |loads and runs executable at path with args arg0, argl, ...
® pathis the complete path of an executable
® arg0 becomes the name of the process

» typically argO is either identical to path, or else it contains
only the executable filename from path

® “real” arguments to the executable start with argl, etc.
® |ist of args is terminated by a (char *)NULL argument

m returns -1 if error, otherwise doesn’t return!
® “Toto, we’re not in Kansas anymore”

main() {
it (fork() == 0) {
execl(""/usr/bin/cp™, 'cp', "foo", "bar', (char *)NULL);

+
waitt(NULL);

printf(*'copy completed\n');
exit(Q);

— 25—

Summarizing

Exceptions
m Events that require nonstandard control flow
m Generated externally (interrupts) or internally (traps and faults)

Processes
m At any given time, system has multiple active processes
m Each process must have at least one execution thread

m Only one thread can execute on a processor (core) at a time, but
the address space used on a core is that of the process whose
thread is currently running there

m All threads of a given process share acommon address space

m Each running thread appears to have total control of its core and
Its process’s private address space

m The address space of a process can be in simultaneous use on
multiple cores if the process has multiple running threads

e deployed across these multiple cores

Summarizing (cont.)

Spawning Processes

m Callto fork(Q)
® One call, two returns; one to parent, one to child in new process

Terminating Processes

m Call exit(int exit _code)
® One call, no return

e |f called by any thread of a process, then all threads in the process
will terminate, as will the process itself

Reaping Processes
m Call wart (int * exit _status);

Replacing Program Executed by Process

m Call execl(char* path, char* argv0, .. (char *)NULL);
® Actually can use any of 6 exec variants (execl, execlp, execv, etc.)

® One call, new program starts at main() (no return to caller)
—27 —

	Altering the Control Flow
	Exceptional Control Flow
	System context for exceptions
	Exceptions
	Interrupt Vectors
	Slide Number 6
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	Trap Example
	Fault Example #1
	Fault Example #2
	Processes
	Thread States and Transitions
	Threads
	Context Switching
	fork: Creating new processes
	Slide Number 17
	Fork Example #1
	Slide Number 19
	Fork Example #2
	exit: Destroying Process
	Zombies
	wait: Synchronizing with children
	wait: Synchronizing with children
	exec: Running new programs
	Summarizing
	Summarizing (cont.)

