
– 1 –

Altering the Control Flow
Up to Now: two mechanisms for changing control flow:

 Jumps and branches
 Call and return using the stack discipline.
 Both react to changes in program state.

Insufficient for a useful system
 Difficult for the CPU to react to changes in system state.

 data arrives from a disk or a network adapter.
 Instruction divides by zero
 User hits ctl-c at the keyboard
 System timer expires

System needs mechanisms for “exceptional control
flow”

– 2 –

Exceptional Control Flow
 Mechanisms for exceptional control flow exists at all levels

of a computer system.

Low level Mechanism
 exceptions

 change in control flow in response to a system event (i.e.,
change in system state)

 Combination of hardware and OS software

Higher Level Mechanisms
 Process context switch
 Signals
 Nonlocal jumps (setjmp/longjmp)
 Implemented by either:

 OS software (context switch and signals).
 C language runtime library: nonlocal jumps.

– 3 –

System context for exceptions

Local/IO Bus

Memory Network
adapter

IDE disk
controller

Video
adapter

Display Network

Processor Interrupt
controller

SCSI
controller

SCSI bus

Serial port
controller

Parallel port
controller

Keyboard
controller

Keyboard Mouse Printer Modem

disk

disk CDROM

– 4 –

Exceptions

An exception is a transfer of control to the OS in response
to some event (i.e., change in processor state)

User Process OS

exception
exception processing
by exception handler

exception
return (optional)

event current
next

– 5 –

Interrupt Vectors

 Each type of event has a
unique exception number k

 Index into jump table (a.k.a.,
interrupt vector)

 Jump table entry k points to
a function (exception
handler).

 Handler k is called each
time exception k occurs.

interrupt
vector

0
1
2 ...

n-1

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

– 6 – 6

80x86 System
 Level R

egisters

256 vectors
max

– 7 –

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin
 handler returns to “next” instruction.

Examples:
 I/O interrupts

 hitting ctl-c at the keyboard
 arrival of a packet from a network
 arrival of a data sector from a disk

 Hard reset interrupt
 hitting the reset button

 Soft reset interrupt
 hitting ctl-alt-delete on a PC

– 8 –

Synchronous Exceptions

Caused by events that occur as a result of executing an
instruction:
 Traps

 Intentional
 Examples: system calls, breakpoint traps, special instructions
 Returns control to “next” instruction

 Faults
 Unintentional but possibly recoverable
 Examples: page faults (recoverable), protection faults

(unrecoverable).
 Either re-executes faulting (“current”) instruction or aborts.

 Aborts
 unintentional and unrecoverable
 Examples: parity error, machine check.
 Aborts current program

– 9 –

Trap Example

User Process OS

exception
Open file

return

int
pop

Opening a File
 User calls open(filename, options)

 Function open executes system call instruction int

 OS must find or create file, get it ready for reading or writing
 Returns integer file descriptor

0804d070 <__libc_open>:
 . . .
 804d082: cd 80 int $0x80
 804d084: 5b pop %ebx
 . . .

– 10 –

Fault Example #1

User Process OS

page fault
Create page and load
into memory return

event movl

Memory Reference
 User writes to memory location
 That portion (page) of user’s memory

is currently on disk

 Page handler must load page into
physical memory

 Returns to faulting instruction
 Successful on second try

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

– 11 –

Fault Example #2

User Process OS

page fault

Detect invalid address
event movl

Memory Reference
 User writes to memory location
 Address is not valid

 Page handler detects invalid address
 Sends SIGSEGV signal to user process
 User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Signal process

– 12 –

Processes
Def: A process is an instance of a running program.

 One of the most profound ideas in computer science.
 Not the same as “program” or “processor”

A process provides each program with two key
abstractions:
 Logical control flow

 Each thread of a process seems to have exclusive use of a
CPU.

 Private address space
 Each process seems to have exclusive use of main memory.

How are these Illusions maintained?
 Process thread executions are interleaved (multitasking)
 Address spaces are managed by a virtual memory system

– 13 –

Thread States and Transitions

DISPATCH

fork()

PREEMPT

WAKEUP

SLEEP

EXIT

ready

Run
K/U

block

– 14 –

Threads
The executable (schedulable) elements in a Linux system
Each thread in the system is uniquely contained by some

process
 Each user thread is contained by some user PID
 Each kernel thread is contained in PID 0

When a new process is created, it is populated by exactly
one executable thread, known as the Initial Thread (IT) of
the new process

The IT of a process can create new threads only within its
own process

While the IT must create the second thread in a process, any
subsequent threads can then create new threads, but
only within their own process

– 15 –

Context Switching
Processes are managed by a shared chunk of OS code

called the kernel
 Important: the kernel is not a separate process, but rather

runs as part of some thread in some user process

Control flow passes from one thread in a process to
another thread in the same or a different process via
a context switch.

 Process A
thread

Process B
thread

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

– 16 –

fork: Creating new processes

int fork(void)
 creates a new process (child process) that is identical to the

calling process (parent process)
 returns 0 to the child process
 returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

– 17 –

switch (int pid = fork()){
 case -1: perror(“fork failed “);
 exit(1);
 case 0: printf(“child alive\n”);
 execl(“./myprog”, “myprog”, NULL);
 default: printf(“created PID %d \n”, pid);
} // end switch

 progA code

 progA data

 IT stack

PID X

progA

PID Y

progA

 progA code

 progA data

 IT stack

Parent executes this case

Child executes this case

PID Y

myprog

 myprog code

 myprog data

 main IT stack Child execl

fork creates
child

– 18 –

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {
 printf("Child has x = %d\n", ++x);
 } else {
 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

Key Points
 Parent and child both run same code

 Distinguish parent from child by return value from fork
 Child inherits a copy-on-write (COW) version of parent

 Including all parent open file descriptors (stdin, stdout, etc.)
 Relative ordering of parent/child print statements undefined

– 19 –

bill@cs3:~/cs305demo$./fork_test
Parent has x = 0
Bye from process 24697 with x = 0
Child has x = 2
Bye from process 24698 with x = 2

bill@cs3:~/cs305demo$./fork_test
Child has x = 2
Parent has x = 0
Bye from process 24700 with x = 2
Bye from process 24699 with x = 0

-bash-4.1$./fork_test
Parent has x = 0
Bye from process 10279 with x = 0
Child has x = 2
Bye from process 10280 with x = 2

bill@cs3:~/cs305demo$./fork_test
Parent has x = 0
Child has x = 2
Bye from process 24350 with x = 0
Bye from process 24351 with x = 2

cs

cs

mercury

cs

Some fork_test runs

– 20 –

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

Key Points
 Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

– 21 –

exit: Destroying Process
void exit(int status)

 exits a process
 Normally return with status 0

 atexit() registers functions to be executed upon exit

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

– 22 –

Zombies
Idea

 When process terminates, still consumes system resources
 Various tables maintained by OS

 Called a “zombie”
 Living corpse, half alive and half dead

Reaping
 Performed by parent on terminated child
 Parent is given exit status information
 Kernel discards process

What if Parent Doesn’t Reap?
 If any parent terminates without reaping a child, then child

will be reaped by init process
 Only need explicit reaping for long-running processes

 E.g., shells and servers

– 23 –

wait: Synchronizing with children
int wait(int *child_status)

 suspends current process until one of its children
terminates

 return value is the pid of the child process that terminated
 if child_status != NULL , then the object it points to

will be set to a status indicating why the child process
terminated

Declare a typedef for the exit status information returned
from the wait() call (pid = wait(int *status))

typedef union{
 int exit_status;
 struct{
 unsigned sig_ num:7;
 unsigned core_dmp:1;
 unsigned exit_num:8;
 }parts;
}LE_Wait_Status

– 24 –

wait: Synchronizing with children
void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

– 25 –

exec: Running new programs
int execl(char *path, char *arg0, char *arg1, …, (char *)NULL)

 loads and runs executable at path with args arg0, arg1, …
 path is the complete path of an executable
 arg0 becomes the name of the process

» typically arg0 is either identical to path, or else it contains
only the executable filename from path

 “real” arguments to the executable start with arg1, etc.
 list of args is terminated by a (char *)NULL argument

 returns -1 if error, otherwise doesn’t return!
 “Toto, we’re not in Kansas anymore”

main() {
 if (fork() == 0) {
 execl("/usr/bin/cp", "cp", "foo", "bar", (char *)NULL);
 }
 wait(NULL);
 printf("copy completed\n");
 exit();
}

– 26 –

Summarizing
Exceptions

 Events that require nonstandard control flow
 Generated externally (interrupts) or internally (traps and faults)

Processes
 At any given time, system has multiple active processes
 Each process must have at least one execution thread
 Only one thread can execute on a processor (core) at a time, but

the address space used on a core is that of the process whose
thread is currently running there

 All threads of a given process share a common address space
 Each running thread appears to have total control of its core and

its process’s private address space
 The address space of a process can be in simultaneous use on

multiple cores if the process has multiple running threads
deployed across these multiple cores

– 27 –

Summarizing (cont.)
Spawning Processes

 Call to fork()
 One call, two returns; one to parent, one to child in new process

Terminating Processes
 Call exit(int exit_code)

 One call, no return
 If called by any thread of a process, then all threads in the process

will terminate, as will the process itself

Reaping Processes
 Call wait (int * exit_status);

Replacing Program Executed by Process
 Call execl(char* path, char* argv0, … (char *)NULL);

 Actually can use any of 6 exec variants (execl, execlp, execv, etc.)
 One call, new program starts at main() (no return to caller)

	Altering the Control Flow
	Exceptional Control Flow
	System context for exceptions
	Exceptions
	Interrupt Vectors
	Slide Number 6
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	Trap Example
	Fault Example #1
	Fault Example #2
	Processes
	Thread States and Transitions
	Threads
	Context Switching
	fork: Creating new processes
	Slide Number 17
	Fork Example #1
	Slide Number 19
	Fork Example #2
	exit: Destroying Process
	Zombies
	wait: Synchronizing with children
	wait: Synchronizing with children
	exec: Running new programs
	Summarizing
	Summarizing (cont.)

