Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware.

= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),

then in main memory.
m Typical system structure:

CPUCKID e

3 Register file
Cache <_> :> ALU|
memories

1L 7T

: System bus

Memory bus

Bus interface

/0
bridge

—_—

Main
memory

General Cache Organization (S, E, B)

S=2s¢ sets<

E = 2¢ lines per set

A

Cache size:
C=Sx E x Bdata bytes

coee
cooe
coee
cececsscccessssscessccseesee
coee
Vv tag 1121 «ece-- B-1
valid bit ~——

B = 2b bytes per cache block (the data)

caChe Read e Locate set

e Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
e A ~ e Locate data starting
4 at offset
o000

Address of word:

t bits s bits | b bits

— A A
S=ZSSEtS< TR

tag set block
index offset

data begins at this offset

Vv tag 0|12 - B-1

valid bit N~
B = 2P bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S=2s sets<

tag o|l1]|2]|3]|4]|s5]se

Address of int:

t bits

0..01

100

tag o|l1]|2]|3]|4]|s5]se

tag o|l1]|2]|3]|4]|s5]se

tag 0]1|2]314]|5]6

find set

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

'} tag 0|1|2(|3]14]|5

t bits

0..01

100

block offset

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

v tag 011|2|3|4]|5]|6]7

int (4 Bytes) is here

No match: old line is evicted and replaced

block offset

Direct-Mapped Cache Simulation

t=1 s=2 b=1 M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set 1
Set 2
Set3| 1 | 0 M[6-7]

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

v tag 0[1|2|3]14]|5]|6]|7

tag

tbits | 0..01 | 100
v tag 0|1|2]|3|4]|5]|6]|7 tag 5|67
vl [tag | [o[2]2[3]a[5]6][7 tag 5[6|7|| — find set
v tag 0|1|2]|3|4]|5]|6]|7 tag 5|67

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

'} tag 011]2]|3]|4]|5]|6]7 v tag 011|2|3]|4]|5]|6]|7||] —

block offset

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

v tag 0|1]|2|3]|4

617 v tag

short int (2 Bytes) is here

No match:

*One line in set is selected for eviction and replacement

block offset

*Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2

s=1

b

1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block
seto |1 |00 [M[O-1]
1 |10 |M[8-9]

1 |01 [Mm[6-7]

Set1l 0 ||

11

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

12

Intel Core i7 Cache Hierarchy

Processor package

Regs
L1 L1
d-cache| |i-cache

L2 unified cache

Core 3
Regs
L1 L1
d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

13

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

14

Lets think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

15

Writing Cache Friendly Code

m Make the common case go fast

" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

16

Today

m Performance impact of caches

" The memory mountain

17

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

18

Memory Mountain Test Function

/* The test function */

void test(int elems, iInt stride) {
int 1, result = 0O;
volatile int sink;

for (1 = 0; 1 < elems; 1 += stride)
result += data[i];
sink = result; /* So compiler doesn"t optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, iInt stride, double Mhz)
{

double cycles;

int elems = size / sizeof(int);

test(elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

19

The Memory Mountain

Read throughput (MB/s)

4000 =
3000 -
2000 -

1000

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache

8M unified L3 cache

‘ All caches on-chip

256 KB unified L2 cache

Working set size (bytes)

20

The Memory Mountain

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache

256 KB unified L2 cache

8M unified L3 cache

Working set size (bytes)

@ 7000 -
g | ‘
< 5000 . All caches on-chip
=
o \
S 5000 g
-
2
£ 4000
E: 3000
14
Slopes 012 0
spatial 1400
locality o
E % IL[')I | EIi
@ n @ LT o : o0
wn = o : 'E = (]
- N — LD L il - =
Stride (x8 bytes) © 5 Ns ©
?3

21

Intel Core i7

The Memory Mountain LG e

32 KB L1 d-cache

8M unified L3 cache

256 KB unified L2 cache

g 7000 -)
E /’,/”,’l ‘ o i
< 6000 - All caches on-chip
= |
=%
S 5000 g
-
2
£ 4000
T Ridges of
s 3000 Temporal
locality
Slopes 012
spatial 1400
locality o
0 —r"'l"’I
v | xli
@ v O) o I T 0
"m0 | = d
] — l A)
Stride (x8 bytes) © 3 o 2 % Working set size (bytes)
w

22

Today

m Cache organization and operation
m Performance impact of caches

®" The memory mountain
= Rearranging loops to improve spatial locality

® Using blocking to improve temporal locality

23

Miss Rate Analysis for Matrix Multiply

m Assume:
" Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows
m Analysis Method:

" Look at access pattern of inner loop

AN,

G—
-

24

Matrix Multiplication Example

m Description:
= Multiply N x N matrices
= O(N3) total operations

= N reads per source
element

" N values summed per
destination

= but may be able to
hold in register

Variable sum

/> gk =/ held in register
for (1=0; 1<n; 1++) |
for (J=0; j<n; j++) { /
sum = 0.0; «
for (k=0; k<n; k++)
sum += a[i][k] * b[k][J1:
clilly] = sum;
+

}

25

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
= for (1 = 0; 1 < N; 1++)
sum += a[O0][1];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= compulsory miss rate = 4 bytes / B
m Stepping through rows in one column:
= for (1 = 0; 1 < n; 1++)
sum += a[1][0];
= accesses distant elements
" no spatial locality!

= compulsory miss rate =1 (i.e. 100%)

26

Matrix Multiplication (ijk)

7% ijKk *7

_ _ _ Inner loop:
for (1=0; 1<n; 1++) {

for (j=0; j<n; j++) { *
sum = 0.0; I;l . (i,J)
for (k=0; k<n: k++) (i,%)
A B

sum += a[i][k] * b[KILil:

cfi][3)] = sum; ‘ ‘ ‘
}
¥ Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

27

Matrix Multiplication (jik)

/* jJik */
for (=0; j<n; j++) {
for (1=0; 1<n; 1++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[1][k] * bLK1[]:
c[i][jJ] = sum
ks

}

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

Inner loop:
.
i,j)
] B
A B C
Row-wise Column- Fixed
wise

28

Matrix Multiplication (kij)

/* kiy */
for (k=0; k<n; k++) {

for (1=0; 1<n; 1++) { (i,k) (k,*)
r = a[i][k];: O E g(h*)
B C

Inner loop:

for (J=0; j<n; j++) A
ciilpgl +=r * b[klJ]1: ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

Matrix Multiplication (ikj)

/* 1ky */
for (1=0; 1<n; 1++) {

for (k=0; k<n; k++) { (i,k) (k,*)
r = a[i][k]; u Iﬁ g(lr*)
B C

for (J=0; j<n; j++) A
clilbbl += r * b[k1[i]: ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

30

Matrix Multiplication (jki)

/* Jki */
for (J=0; J<n; j++) {
for (k=0; k<n; k+t+) {
r = blkl[1;

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

Inner loop:

(*,k)

Hi

for (1=0; 1<n; 1++) A
chilpgl += a[i][Kk] * r;
Column-
wise

(*,J)

() “:

B C

L

Fixed Column-
wise

31

Matrix Multiplication (kiji)

/* kjn */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *J
for (i=0; -

Inner loop:

f<n; 1++) A B C
ciilig] += alil[k] * r; ‘ ‘ ‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

32

Summary of Matrix Multiplication

for (1=0; i1<n; i1++) {
for (J=0; j<n; jJ++ . ..
sum(: O.OJ; A ijk (& jik):
for (k=0; k<n; k++) ¢ 2 loads, O stores

sum += a[i]1[k] * b[K10]; e misses/iter = 1.25

c[ilj]1 = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) { kij (& ikj):
r = a[i][K]; ¢ 2 loads, 1 store
for (J=0; Jj<n; j++) e misses/iter = 0.5
clilhl += r * b[KIO];

}

}

for (J=0; j<n; j++) {

for (k=0; k<n; k++) { jki (& kji):
r = b[KI[i]1; e 2 |loads, 1 store
for (i=0; i<n; i++) e misses/iter = 2.0

clilh] += al[illk] * r;
}
}

Cycles per inner loop iteration

Core i7 Matrix Multiply Performance

60

jki / kji
R — WK
S0 ¥

m /

~jki
=Kji
—ijk

30 —%—Jlk
ijk / jik E(k”;

20

10

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) “

= Using blocking to improve temporal locality

35

Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, Int n) {
int 1, j, k;
for (1 = 0; 1 < n; 1++)
for (G = 0; J < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[1*n + K]*b[k*n + j];

LT

Il
*

36

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration:

" n/8+n=9n/8 misses

= Afterwards in cache:
(schematic) .

8 wide

37

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m Second iteration:

" Again:
n/8 + n = 9n/8 misses

m Total misses:
" 9n/8 *n?=(9/8) * n3

8 wide

38

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, Int n) {
int i, j, k;

for (i = 0; 1 < n; 1+=B)
for = 0; J < n; j+=B)
for (k = 0; k < n; k+=B)

K ;
/* B x B mint matrix multiplications */
for (11 1; 11 < 1+B; 1++)
for (J1 = j; jJ1 < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+j1] += a[1l1*n + k1]*b[kl*n + j1];

j1
C a b C
— K +
] i1 0 I

Block size Bx B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m First (block) iteration:
= B2/8 misses for each block W

= 2n/B * B2/8 =nB/4
(omitting matrix c)

= Afterwards in cache]
(schematic)

n/B blocks

N\

—AHEEN \

Block size Bx B

40

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m Second (block) iteration:

= Same as first iteration []
= 2n/B * B2/8 =nB/4

m Total misses:
=" nB/4 * (n/B)? = n3/(4B)

n/B blocks

A
'd N\

Block size Bx B

41

Summary

No blocking: (9/8) * n3
Blocking: 1/(4B) * n3

Suggest largest possible block size B, but limit 3B2 < C!

Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

42

Concluding Observations

m Programmer can optimize for cache performance
" How data structures are organized
" How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
" Getting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

43

	Cache Memories
	General Cache Organization (S, E, B)
	Cache Read
	Example: Direct Mapped Cache (E = 1)
	Example: Direct Mapped Cache (E = 1)
	Example: Direct Mapped Cache (E = 1)
	Direct-Mapped Cache Simulation
	E-way Set Associative Cache (Here: E = 2)
	E-way Set Associative Cache (Here: E = 2)
	E-way Set Associative Cache (Here: E = 2)
	2-Way Set Associative Cache Simulation
	What about writes?
	Intel Core i7 Cache Hierarchy
	Cache Performance Metrics
	Lets think about those numbers
	Writing Cache Friendly Code
	Today
	The Memory Mountain
	Memory Mountain Test Function
	The Memory Mountain
	The Memory Mountain
	The Memory Mountain
	Today
	Miss Rate Analysis for Matrix Multiply
	Matrix Multiplication Example
	Layout of C Arrays in Memory (review)
	Matrix Multiplication (ijk)
	Matrix Multiplication (jik)
	Matrix Multiplication (kij)
	Matrix Multiplication (ikj)
	Matrix Multiplication (jki)
	Matrix Multiplication (kji)
	Summary of Matrix Multiplication
	Core i7 Matrix Multiply Performance
	Today
	Example: Matrix Multiplication
	Cache Miss Analysis
	Cache Miss Analysis
	Blocked Matrix Multiplication
	Cache Miss Analysis
	Cache Miss Analysis
	Summary
	Concluding Observations

