Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware.

= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),

then in main memory.
m Typical system structure:
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General Cache Organization (S, E, B)

S=2s¢ sets<

E = 2¢ lines per set

A

Cache size:
C=Sx E x Bdata bytes

coee
cooe
coee
cececsscccessssscessccseesee
coee
Vv tag 1121 «ece-- B-1
valid bit ~——

B = 2b bytes per cache block (the data)



caChe Read e Locate set

e Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
e A ~ e Locate data starting
4 at offset
o000

Address of word:

t bits s bits | b bits

— A A
S=ZSSEtS< TR

tag set block
index offset

data begins at this offset

Vv tag 0|12 - B-1

valid bit N~
B = 2P bytes per cache block (the data)



Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S=2s sets<

tag o|l1]|2]|3]|4]|s5]se

Address of int:

t bits

0..01

100

tag o|l1]|2]|3]|4]|s5]se

tag o|l1]|2]|3]|4]|s5]se

tag 0]1|2]314]|5]6

find set




Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

'} tag 0|1|2(|3]14]|5

t bits

0..01

100

block offset




Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

v tag 011|2|3|4]|5]|6]7

int (4 Bytes) is here

No match: old line is evicted and replaced

block offset




Direct-Mapped Cache Simulation

t=1 s=2 b=1 M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set 1
Set 2
Set3| 1 | 0 M[6-7]




E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

v tag 0[1|2|3]14]|5]|6]|7

tag

tbits | 0..01 | 100
v tag 0|1|2]|3|4]|5]|6]|7 tag 5|67
vl [ tag | [o[2]2[3]a[5]6][7 tag 5[6|7|| — find set
v tag 0|1|2]|3|4]|5]|6]|7 tag 5|67




E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

'} tag 011]2]|3]|4]|5]|6]7 v tag 011|2|3]|4]|5]|6]|7||] —

block offset



E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

v tag 0|1]|2|3]|4

617 v tag

short int (2 Bytes) is here

No match:

*One line in set is selected for eviction and replacement

block offset

*Replacement policies: random, least recently used (LRU), ...




2-Way Set Associative Cache Simulation

t=2

s=1

b

1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block
seto |1 |00 [M[O-1]
1 |10 |M[8-9]

1 |01 [Mm[6-7]

Set1l 0 ||
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What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Processor package

Regs
L1 L1
d-cache| |i-cache

L2 unified cache

Core 3
Regs
L1 L1
d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.
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Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Lets think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

m Make the common case go fast

" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

16



Today

m Performance impact of caches

" The memory mountain
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

18



Memory Mountain Test Function

/* The test function */

void test(int elems, iInt stride) {
int 1, result = 0O;
volatile int sink;

for (1 = 0; 1 < elems; 1 += stride)
result += data[i];
sink = result; /* So compiler doesn"t optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, iInt stride, double Mhz)
{

double cycles;

int elems = size / sizeof(int);

test(elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
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The Memory Mountain

Read throughput (MB/s)

4000 =
3000 -
2000 -

1000

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache

8M unified L3 cache

‘ All caches on-chip

256 KB unified L2 cache

Working set size (bytes)
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The Memory Mountain

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache

256 KB unified L2 cache

8M unified L3 cache

Working set size (bytes)
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Today

m Cache organization and operation
m Performance impact of caches

®" The memory mountain
= Rearranging loops to improve spatial locality

® Using blocking to improve temporal locality
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Miss Rate Analysis for Matrix Multiply

m Assume:
" Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows
m Analysis Method:

" Look at access pattern of inner loop

AN,

G—
-
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Matrix Multiplication Example

m Description:
= Multiply N x N matrices
= O(N3) total operations

= N reads per source
element

" N values summed per
destination

= but may be able to
hold in register

Variable sum

/> gk =/ held in register
for (1=0; 1<n; 1++) |
for (J=0; j<n; j++) { /
sum = 0.0; «
for (k=0; k<n; k++)
sum += a[i][k] * b[k][J1:
clilly] = sum;
+

}
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
= for (1 = 0; 1 < N; 1++)
sum += a[O0][1];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= compulsory miss rate = 4 bytes / B
m Stepping through rows in one column:
= for (1 = 0; 1 < n; 1++)
sum += a[1][0];
= accesses distant elements
" no spatial locality!

= compulsory miss rate =1 (i.e. 100%)
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Matrix Multiplication (ijk)

7% ijKk *7

_ _ _ Inner loop:
for (1=0; 1<n; 1++) {

for (j=0; j<n; j++) { *
sum = 0.0; I;l . (i,J)
for (k=0; k<n: k++) (i,%)
A B

sum += a[i][k] * b[KILil:

cfi][3)] = sum; ‘ ‘ ‘
}
¥ Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0
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Matrix Multiplication (jik)

/* jJik */
for (=0; j<n; j++) {
for (1=0; 1<n; 1++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[1][k] * bLK1[]:
c[i][jJ] = sum
ks

}

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

Inner loop:
.
i,j)
] B
A B C
Row-wise Column- Fixed
wise
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Matrix Multiplication (kij)

/* kiy */
for (k=0; k<n; k++) {

for (1=0; 1<n; 1++) { (i,k) (k,*)
r = a[i][k];: O E g(h*)
B C

Inner loop:

for (J=0; j<n; j++) A
ciilpgl +=r * b[klJ]1: ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25



Matrix Multiplication (ikj)

/* 1ky */
for (1=0; 1<n; 1++) {

for (k=0; k<n; k++) { (i,k) (k,*)
r = a[i][k]; u Iﬁ g(lr*)
B C

for (J=0; j<n; j++) A
clilbbl += r * b[k1[i]: ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

30



Matrix Multiplication (jki)

/* Jki */
for (J=0; J<n; j++) {
for (k=0; k<n; k+t+) {
r = blkl[1;

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

Inner loop:

(*,k)

Hi

for (1=0; 1<n; 1++) A
chilpgl += a[i][Kk] * r;
Column-
wise

(*,J)

() “:

B C

L

Fixed Column-
wise
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Matrix Multiplication (kiji)

/* kjn */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *J
for (i=0; -

Inner loop:

f<n; 1++) A B C
ciilig] += alil[k] * r; ‘ ‘ ‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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Summary of Matrix Multiplication

for (1=0; i1<n; i1++) {
for (J=0; j<n; jJ++ . ..
sum(: O.OJ; A ijk (& jik):
for (k=0; k<n; k++) ¢ 2 loads, O stores

sum += a[i]1[k] * b[K10]; e misses/iter = 1.25

c[ilj]1 = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) { kij (& ikj):
r = a[i][K]; ¢ 2 loads, 1 store
for (J=0; Jj<n; j++) e misses/iter = 0.5
clilhl += r * b[KIO];

}

}

for (J=0; j<n; j++) {

for (k=0; k<n; k++) { jki (& kji):
r = b[KI[i]1; e 2 |loads, 1 store
for (i=0; i<n; i++) e misses/iter = 2.0

clilh] += al[illk] * r;
}
}




Cycles per inner loop iteration

Core i7 Matrix Multiply Performance
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= Using blocking to improve temporal locality
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Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, Int n) {
int 1, j, k;
for (1 = 0; 1 < n; 1++)
for (G = 0; J < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[1*n + K]*b[k*n + j];

LT

Il
*
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration:

" n/8+n=9n/8 misses

= Afterwards in cache:
(schematic) .

8 wide

37



Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m Second iteration:

" Again:
n/8 + n = 9n/8 misses

m Total misses:
" 9n/8 *n?=(9/8) * n3

8 wide
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, Int n) {
int i, j, k;

for (i = 0; 1 < n; 1+=B)
for = 0; J < n; j+=B)
for (k = 0; k < n; k+=B)

K ;
/* B x B mint matrix multiplications */
for (11 1; 11 < 1+B; 1++)
for (J1 = j; jJ1 < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+j1] += a[1l1*n + k1]*b[kl*n + j1];

j1
C a b C
— K +
] i1 0 I

Block size Bx B



Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m First (block) iteration:
= B2/8 misses for each block W

= 2n/B * B2/8 =nB/4
(omitting matrix c)

= Afterwards in cache ]
(schematic)

n/B blocks

N\

—AHEEN \

Block size Bx B
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

m Second (block) iteration:

= Same as first iteration [ ]
= 2n/B * B2/8 =nB/4

m Total misses:
=" nB/4 * (n/B)? = n3/(4B)

n/B blocks

A
'd N\

Block size Bx B
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Summary

No blocking: (9/8) * n3
Blocking: 1/(4B) * n3

Suggest largest possible block size B, but limit 3B2 < C!

Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly
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Concluding Observations

m Programmer can optimize for cache performance
" How data structures are organized
" How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
" Getting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)
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