4.2. AN EXAMPLE MICROARCHITECTURE

Now that we have reviewed all the basic components from which the micropro-
gramming level is constructed, it is time to see how they are connected. Because

general principles are few and far between in this area, we will introduce the sub-
ject by means of a detailed example.

4.2.1. The Data Path

The data path of our example microarchitecture is shown in Fig. 4-8. (The
data path is that part of the CPU containing the ALU, its inputs, and its outputs.) It
contains 16 identical 16-bit registers, labeled PC, AC, SP, and so on, that form a
scratchpad memory accessible only to the microprogramming level. The registers
labeled 0, +1, and —1 will be used to hold the indicated constants; the meaning of
the other register names will be explained later. (Actually, O is never used in our
simple examples but it probably would be needed in a more complicated machine,
so we have included it because we have more registers than we can use anyway.)
Each register can output its contents onto one or both of two internal buses, the A
bus and the B bus, and each can be loaded from a third internal bus, the C bus, as
shown in the figure.

The A and B buses feed into a 16-bit-wide ALU that can perform four
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172 THE MICROPROGRAMMING LEVEL CHAP. 4

functions: A +B, AANDB, A, and NOT A. The function to be performed is
specified by the two ALU control lines, Fo and F|. The ALU generates two status
bits based on the current ALU output: N, which is set when the ALU output is
negative, and Z, which is set when the ALU output is zero.

The ALU output goes into a shifter, which can shift it 1 bit in either direction,
or not at all. It is possible to perform a 2-bit left shift of a register, R, by computing
R + R in the ALU (which is a 1-bit left shift), and then shifting the sum another bit
left using the shifter.

Neither the A bus nor the B bus feeds the ALU directly. Instead, each one
feeds a latch (ie., a register) that in turn feeds the ALU. The latches are needed
because the ALU is a combinational circuit—it continuously computes the output
for the current input and function code. This organization can cause problems
when computing, for example, A := A + B. As A is being stored into, the value on
the A bus begins to change, which causes the ALU output and thus the C bus to
change as well. Consequently, the wrong value may be stored into A. In other
words, in the assignment A := A + B, the A on the right-hand side is the original A
value, not some bit-by-bit mixture of the old and new values. By inserting latches
in the A and B buses, we can freeze the original A and B values there early in the
cycle, so the ALU is shielded from changes on the buses as a new value is being
stored in the scratchpad. The loading of the latches is controlled by Lypand L;

It is worth pointing out that our solution to this problem (i.e., inserting latches
in front of the ALU) is not the only one. If all the registers are flip-flops rather than
latches, then a two-bus design is also feasible by loading the operands onto the A
and B buses early in the cycle and reading the result from one of the buses late in
the cycle. The trade-offs between two and three bus designs involve complexity,
parallelism, and amount of wiring. A more detailed treatment of these issues is
beyond the scope of this book.

To communicate with memory, we have included an MAR and an MBR in the
microarchitecture. The MAR can be loaded from the B latch, in parallel with an
ALU operation. The M, line controls loading of MAR. On writes, the MBR can
be loaded with the shifter output, in parallel with, or instead of, a store back into the
scratchpad. M; controls loading MBR from the shifter output. M, and M3 control
reads and writes from memory. On reads, the data read from memory can be
presented to the left input of the ALU via the A multiplexer, indicated by Amux in
Fig. 4-8. A control line, Aj, determines whether the A latch or the MBR is fed into
the ALU. The microarchitecture of Fig. 4-8 is similar to that of several commer-
cially available bit slices.

4.2.2. Microinstructions

To control the data path of Fig. 4-8 we need 61 signals. These can be divided
into nine functional groups, as described below.
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16 signals to control loading the A bus from the scratchpad
16 signals to control loading the B bus from the scratchpad
16 signals to control loading the scratchpad from the C bus
2 signals to control the A and B latches

2 signals to control the ALU function

2 signals to control the shifter

4 signals to control the MAR and MBR

2 signals to indicate memory read and memory write
1 signal to control the Amux

Given the values of the 61 signals, we can perform one cycle of the data path. A
cycle consists of gating values onto the A and B buses, latching them in the two bus
latches, running the values through the ALU and shifter,
results in the scratchpad and/or MBR. In addition, th ,
and a memory cycle initiated. As a first approximation, we could have a 61-bit
control register, with one bit for each control signal. A
1s asserted and a O means that it is negated.

However, at the price of a small increase in circuitry,
number of bits needed to control the data path. To begin with, we have 16 bits for
controlling input to the A bus, which allows 216 combinations of source registers.
Onl.y 16 of these combinations are permitted—namely, each of the 16 registers all
by itself. Therefore, we can encode the A bus information in 4 bits and use a
decoder to generate the 16 control signals. The same holds for the B bus.

The situation is slightly different for the C bus. In

we can greatly reduce the

can indic:ate that the C bus is to be stored (ENC = 1) or not (ENC = 0).
At this point we can control the data path with a 24-bit number. Now we note
that RD and WR can be used to control latching MBR from the system data bus and

gnabling MBR onto it respectively. This observation reduces the number of
independent control signals from 24 down to 22.

The next step in the design of the microarchitecture IS to invent a
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microinstruction format containing 22 bits. Figure 4-9 shows sgch a format, with
two additional fields COND and ADDR, which will be described shortly. The
microinstruction contains 13 fields, 11 of which are as follows:

AMUX — controls left ALU input: 0 = A latch, 1 = MBR

ALU — ALU function:0=A+B,1 =AANDB,2=A,3=A

SH — shifter function: 0 = no shift, 1 = right, 2 = left

MBR — loads MBR from shifter: 0 = don’t load MBR, 1 = load MBR
MAR — loads MAR from B latch: 0 = don’t load MAR, 1 = load MAR
RD  — requests memory read: 0 = no read, 1 = load MBR from memory
WR  —requests memory write: 0 = no write, 1 = write MBR to memory
ENC  — controls storing into scratchpad: 0 = don’t store, 1 = store

C — selects register for storing into if ENC = 1: 0 = PC, 1 = AC, etc.
B — selects B bus source: 0 = PC, 1 = AC, etc.

A — selects A bus source: 0 = PC, 1 = AC, etc.

The ordering of the fields is completely arbitrary. This ordcring ha§ bqen c'hosen to
minimize line crossings in a subsequent figure. (Actually, this criterion is not as
crazy as it sounds; line crossings in figures usually cor.respond to wire crossings on
printed circuit boards or on chips, which cause trouble in two-dimensional designs.)

Bits 1 2 2 2 11111 4 4 4 8
AlC MM, | JE
M Q |ALy| sH B|A|RWn| © B A ADDR
r|R|P|R|c
X Pl tead b bt
AMUX COND ALU SH MBR, MAR, RD, WR, ENC
= 0 = No jum +B 0=Noshift ) 0 =No
(1’ = cIIBaF:Ch 1= Jun,\p ipr =1 AND B 1 = Shift right 1 bit 1=Yes

2 = Shift left 1 bit
3 = (not used)

2=JumpifZ=1
3 = Jump always

WK =
wowonon
>1> > >

Fig. 4-9. The microinstruction layout for controlling the data path of Fig. 4-8.

4.2.3. Microinstruction Timing

Although our discussion of how a microinstruction can cqntrol the da'ta path
during one cycle is almost complete, we have neglected one issue up unul now:
timing. A basic ALU cycle consists of setting up the A and B latches, giving the
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ALU and shifter time to do their work, and storing the results. It is obvious that
these events must happen in that sequence. If we try to store the C bus into the
scraichpad before the A and B latches have been loaded, garbage will be stored
instead of useful data. To achieve the correct event sequencing, we now introduce
a four-phase clock, that is, a clock with four subcycles, like that of Fig. 4-5. The
key events during each of the four subcycles are as follows:

1. Load the next microinstruction to be executed into a register called
MIR, the Microlnstruction Register.

2. Gate registers onto the A and B buses and capture them in the A and B
latches.

3. Now that the inputs are stable, give the ALU and shifter time to pro-
duce a stable output and load the MAR if required.

4. Now that the shifter output is stable, store the C bus in the scratchpad
and load the MBR, if either is required.

Figure 4-10 is a detailed block diagram of the complete microarchitecture of
our example machine. It may look imposing initially but it is worth studying care-
fully. When you fully understand every box and every line on it, you will be well
On your way to understanding the microprogramming level. The block diagram has
two parts, the data path, on the left, which we have already discussed in detail, and
the control section, on the right, which we will now look at.

The largest and most important item in the control portion of the machine is the
control store. This special, high-speed memory is where the microinstructions are
kept. On some machines it is read-only memory; on others it is read/write memory.
In our example, microinstructions will be 32 bits wide and the microinstruction
address space will consist of 256 words, so the control store will occupy a max-
imum of 256 x 32 = 8192 bits.

Like any other memory, the control store needs an MAR and an MBR. We will
call the MAR the MPC (MicroProgram Counter), because its only function is to
point to the next microinstruction to be executed. The MBR is just the MIR as
mentioned above. Be sure you realize that the control store and main memory are
completely different, the former holding the microprogram and the latter the con-
ventional machine language program.

From Fig. 4-10 it is clear that the control store continuously tries to copy the
microinstruction addressed by the MPC into the MIR. However, the MIR is only
loaded during subcyle 1, as indicated by the dashed line from the clock to it. Dur-
ing the other three subcycles it is not affected, no matter what happens 1o MPC.

During subcycle 2, the MIR is stable, and the various fields begin controlling
the data path. In particular, A and B gate onto the A and B buses. The A decoder
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0 = Do not jump; next microinstruction is taken from MPC + 1
1 =Jump to ADDR if N = 1
2=Jump to ADDR if Z = 1

3 = Jump to ADDR unconditionally

The Micro sequencing logic combines the two ALU bits, N and Z, and the two
COND bits, call them L and R for Left and Right, to generate an output. The correct
signal is

Mmux =LRN + LRZ+LR =RN + LZ + LR

where + means INCLUSIVE OR. In words, the control signal to Mmux is 1 (routing
ADDR to MPC) if LR is 01, and N = I, or LR is 10, andZ=1o0r LR is 11,. Other-
wise, it is 0 and the next microinstruction in sequence is fetched. The circuit to
compute the Mmux signal can be built from SSI components, as in Fig. 3-3(b), or
be part of a PLA, as in Fig. 3-16. .

To make our example machine slightly realistic, we will assume that a main
memory cycle takes longer than a microinstruction. In particular, if a microinstruc-
tion starts a main memory read, by setting RD to 1, it must also have RD = 1 in the
next microinstruction executed (which may or may not be located at the next con-
trol store address). The data become available two microinstructions after the read
was initiated. If the microprogram has nothing else useful to do in the microin-
struction following the one that initiated a memory read, the microinstruction just
has RD = 1 and is effectively wasted. In the same way, a memory write also takes
WO microinstruction times to complete.

4.3. AN EXAMPLE MACROARCHITECTURE

To continue our microprogramming level example, we now switch to the archi-
tecture of the conventional machine level to be supported by the interpreter running
on the machine of Fig. 4-10. For convenience, we will call the architecture of the
level 2 or 3 machine the macroarchitecture, to contrast it with level 1, the
microarchitecture. (For the purposes of this chapter we will ignore level 3 because
its instructions are largely those of level 2 and the differences are not important
here.) Similarly, the level 2 instructions will be called macroinstructions. Thus
for the duration of this chapter, the normal ADD, MOVE, and other instructions of
the conventional machine level will be called macroinstructions. (The point of
repeating this remark is that some assemblers have a facility to define assembly-
time ‘“‘macros,”” which are in no way related to what we mean by
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macroinstructions.) We will sometimes refer to our example level 1 machine as
Mic-1 and the level 2 machine as Mac-1. Before we describe Mac-1, however, we
will digress slightly to motivate its design.

4.3.1. Stacks

A modern macroarchitecture should be designed with the needs of high-level
languages in mind. One of the most important design issues is addressing. To
illustrate the problem that must be solved, consider the Pascal program of Fig. 4-
11(a). The main program initializes two vectors, x and y, with values such that
Xy =kand y, =2k + 1. Then it computes the inner product (also called a dot pro-
duct) of the two vectors. Whenever it needs to multiply two small positive integers,
it calls the function pmul. (Imagine that the compiler is for a microcomputer and
only implements a subset of Pascal, not including the multiplication operator.)

Block-structured languages like Pascal are normally implemented in such a way
that when a procedure or function is exited, the storage it had been using for local
variables is released. The easiest way to achieve this goal is by using a data struc-
ture called a stack. A stack is a contiguous block of memory containing some data
and a stack pointer (SP) telling where the top of the stack is. The bottom of the
stack is at a fixed address and will not concern us further. Figure 4-12(a) depicts a
stack occupying six words of memory. The bottom of the stack is at 4020 and the
top of the stack, where SP points, is at 4015. Our stacks will grow from high
memory addresses to low ones but the opposite choice is equally good.

Several operations are defined on stacks. Two of the most important are
PUSH X and POP Y. PUSH advances the stack pointer (by decrementing it in our
example) and then puts X into memory at the location now pointed to by SP.
PUSH increases the stack size by one item. POP'Y, in contrast, reduces the stack
size by storing the top item on the stack in Y, and then removing it by incrementing
the stack pointer by the size of the item popped. Figure 4-12(b) shows how the
stack of Fig. 4-12(a) looks after a word containing 5 has been pushed on the stack.

Another operation that can be performed on a stack is advancing the stack
pointer without actually pushing any data. This is normally done when a procedure
or function is entered, to reserve space for local variables. Figure 4-13(a) shows
how memory might be allocated during the execution of the main program of
Fig. 4-11. We have arbitrarily assumed that the memory consists of 4096 16-bit
words, and that the words 4021 to 4095 are used by the operating system, and hence
not available for storing variables. The Pascal variable k is stored at address 4020.
(Addresses are given in decimal.) The array x requires 20 words, from 4000 to
4019. The array y starts at 3980 for y[1] and extends to 3999 for y[20]. While the
main program is executing outside pmul, SP has the value 3980, indicating that the
top of the stack is at 3980.

When the main program wants to call pmul, it first pushes the parameters of the
call, 2 and %, onto the stack, and then executes the call instruction, which pushes the
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program /nnerProduct (output ), K = 4020 /DEFINE SOME SYMBOLS INSP 2 /REMOVE PARAMS
X = 4000 ADDL SUM /AC := SUM + PMULL...)
{This program initializes two vectors, x and v, of 20 elements each, Y f 3980 STOL  SUM /SUM := SUM + PMULL...)
then computes their inner product : A - 4 Loco 1 m_AT END OF LooP
A1) y(1] + x(2) % y{2] + ... + x(20] * 4{20] } B3 ADDL MAC=Td
- ‘ e e I P=1 STOL 1 MN=1+1
. N N J=0 SUBD C20 /AC =] — MAX
const max = 20; {size of the vectors} V=5 INEG L3 JUMP IF | < MAX
ANS = 4 JZER 13 /JUMP IF I = MAX
type Smalllnt = 0..100; SUM = | LODL SUM n2
vec = array(l..max | of Smalllnt I=0 PUSH /PUSH SUM
LODL ANS /AC = ADDRESS OF ANS
L JUMP MAIN /START AT MAIN PROGRAM POPI /ANS := SUM
var I\‘ I;II&f:(r ; PMUL: DESP 2 0 INSP 2 3
I ’ LODL A /1 RETN /RETURN
INZE ANOTZ JUMP IF A <> 0
function pmul (a, b: Smalllnt ): integer LoCo o -on MAIN:  DESP 41 /14
{This function multiplies its two parameters together and retums the product. ANOTZ ig;')ﬂ; gONE /"igr UR{; 0 l;;gg 1l( ;:(55 NOT A LOCAL
: R e e : JAC =
vl;rp;rt(;r.rr;;:ek;eern?ulnpl1cauon by repeated addition .} INZE (E;INOTZ /;UMP FB<>0 " LS?D P 6
o ! = - L ) E LOCO / PUSH /PUSH K ONTO STACK
begin {0: reserve stack space for p and j} JUMP DONE  /RETURN 0 LOCO X—1 IAC := (ADDRESS OF X[1}) 1|
if (@ = 0) or (b = 0) then {1: if either one is 0, result is 0} BNOTZ LOCO 0 3 ADDD K IAC =X + K — 1
prud = 0 {2: function returns 0} STOL P Pi=0 POPI IXK] = K
else LOCO 1 /4 LOCO 2 n
begin STOL J =1 PUSH /PREPARE PMUL(2,...)
p:=0; {3: initialize p} LODL A /CAN LOOP BE EXECUTED? LODD K /PREPARE PMUL(2,K)
for j = 1 to a do {4: add b 10 p a times) INEG L2 /A < 0, DO NOT LOOP PUSH /BOTH PARAMS PUSHED
po=ptb; {5: do the addition} U Lol b s PO NOTLOOF wse ;Il:bé‘h(/:g\%EKIlARAMEIERS
prud = p {6: assign result to function} ADDL B /AC:=P + B ADDD Cl IAC := 2%K + |
end i , N STOL P P:=P+B PUSH /PREPARE Y[K] := 2*K +1
end; {pmul} {7: remove locals and return value} LOCO 1 /TEST AT END OF LOOP LOCO Y1 /AC := (ADDRESS OF Y{1))~1
ADDL J /AC =] + ] ADDD K /IAC =Y + K-—1
; . . N - . STOL J H=J1+1 POPI /Y[K] := 2*K+1
rocedure inner (var v: vec; var ans: integer ), ! _
?Cgfne:utc the inn(er product of v and x and li:tul?n it in ans.} SUBL A /AC:=1 = A Loco 1 /TEST AT END OF LOOP
e ’ JNEG LI AUMPIF J < A ADDD K IAC =K + 1
var sum, i integer ; . JZER LI JUMPIF J = A STOD K K=K+ 1
begin {8: reserve stack space for sum and i} : LODL P 6 SUBD €20 /AC = K — MAX
sum := 0, {9: sum will accumulate inner product} DONE: INSP 2 7 INEG LA JUMP IFK < 0
for i := 1 to max do {10: loop through all the elements} RETN /RETURN IZER L4 JUMP [F K = MAX
sum = sum + pmul (x[i ), v[i ]); {11: accumulate one term} LOCO Y /18
ans := sum {12: copy result to ans} INNER: DESP 2 /8 PUSH /PUSH ADDRESS OF Y
end; {inner) {13: remove sum and i and return} LOCO 0 9 LOCO K /AC := ADDRESS OF K
STOL SUM /SUM := 0 PUSH /PUSH IT ALSO
LOCO 1 /10 CALL INNER /PROCEDURE CALL
begin {14: reserve space for k, x, and y} STOL I ni=1 INSP 2 /REMOVE PARAMS
for k := 1 to max do {15: initialization loop} L3: LOCO X-1 /1 LODD K 9
begin ADDL [ /AC =X + 1~ ] PUSH /PREPARE WRITELN(K)
xlk] =k {16: initialize x} PSHI /PUSH X(I) CALL OUTNUMI /LIBRARY ROUTINE
VIk] = pmad 2. k) + 1 {17: initialize y} LODL Vv /AC := ADDRESS OF VECTOR INSP 1 /REMOVE PARAM
end: ADDL | /AC =V + 1 CALL STOP /END OF JOB
. " k): {18' call inner} SUBD Ci /V BEGINS AT I, NOT 0
inner (y , k), - cal ) PSHI /PUSH V(1] cr. I /CONSTANT 1|
3" iteln (k) {19: print results} CALL PMUL  /PMULKX(I],V(I]) 0. 20 /CONSTANT 20
end.

Fig. 4-11(a). A Pascal program to compute an inner product. Fig. 4-11(b). Innerproduct in assembly language.
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Fig. 4-12. (a) A stack. (b) The stack after pushing 5.

return address onto the stack so that pmul will know where to return when it is
finished. When pmul begins executing, SP is 3977. The first thing it does is
advance the stack pointer by 2, to reserve two words for its own local variables, p
and j. At this point SP is 3975, as shown in Fig. 4-13(b). The top five words on the
stack constitute the stack frame used by pmul; they will be released when it is
finished. The words 3979 and 3978 are labeled a and b because these are the names
of pmul’s formal parameters but, of course, they contain 2 and k, respectively.
When pmul has returned and inner has been called, the stack configuration is as
shown in Fig. 4-13(c). When inner calls pmul, the stack is as shown in Fig. 4-
13(d). Now comes the problem. What code should the compiler generate to access
pmul’s parameters and locals? If it tries to read p using an instruction like MOVE
3976,SOMEWHERE, pmul will work when called from the main program but not
when called from inner. Similarly, MOVE 3971, SOMEWHERE will work when
called from inner, but not when called from the main program. What is really
needed is a way to say "fetch the word 1 higher than the current stack pointer." In
other words, the Mac-1 needs an addressing mode that fetches or stores a word at a
known distance relative to the stack pointer (or some equivalent addressing mode).
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Fig. 4-13. Snapshots of memory during the execution of /nnerProduct. (a) Stack
during execution of the main program. (b) Stack during execution of pmul. (c)
Stack during execution of inner. (d) Stack during execution of pmul when called

from inner.
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4.3.2. The Macroinstruction Set

With this addressing mode in mind, we are now ready to look at the Mac-1’s
architecture. Basically, it consists of a memory with 4096 16-bit words, and three
registers visible to the level 2 programmer. The registers are the program counter,
PC, the stack pointer, SP, and the accumulator, AC, which is used for moving data
around, for arithmetic, and for other purposes. Three addressing modes are pro-
vided: direct, indirect, and local. Instructions using direct addressing contain a 12-
bit absolute memory address in the low-order 12 bits. Such instructions are useful
for accessing global variables, such as x in Fig. 4-11. Indirect addressing allows the
programmer to compute a memory address, putitin AC, and then read or write the
word addressed. This form of addressing is very general and is used for accessing
array elements, among other things. Local addressing specifies an offset from SP
and is used to access local variables, as we have just seen. Together, these three
modes provide a simple but adequate addressing system.

The Mac-1 instruction set is shown in Fig. 4-14. Each instruction contains an
opcode and sometimes a memory address or constant. The first column gives the
binary encoding of the instruction. The second gives its assembly language
mnenionic. The third gives its name and the fourth describes what it does by giving
a Pascal fragment. In these fragments, m[x] refers to memory word x. Thus
LODD loads the accumulator from the memory word specified in its low-order 12
bits. LODD is thus direct addressing, whereas LODL loads the accumulator from
the word at a distance x above SP, hence is local addressing. LODD, STOD,
ADDD, and SUBD perform four basic functions using direct addressing, and
LODL, STOL, ADDL, and SUBL perform the same functions using local address-
ing.

Five jump instructions are provided, one unconditional Jump (JUMP) and four
conditional ones (JPOS, JZER, JNEG, and JNZE). JUMP always copies its low-
order 12 bits into the program counter, whereas the other four only do so if the
specified condition is met.

LOCO loads a 12-bit constant in the range 0 to 4095 (inclusive) into AC. PSHI
pushes onto the stack the word whose address is present in AC. The inverse opera-
tion is POPI, which pops a word from the stack and stores it in the memory word
addressed by AC. PUSH and POP are useful for manipulating the stack in a variety
of ways. SWAP exchanges the contents of AC and SP, which is useful when SP
must be increased or decreased by an amount not known at compile time. It is also
useful for initializing SP at the start of execution. INSP and DESP are used to
change SP by amounts known at compile time. Due to lack of encoding space, the
offsets here have been limited to 8 bits, Finally, CALL calls a procedure, saving
the return address on the stack, and RETN returns from a procedure, by popping the
return address and putting it into PC,

So far, our machine does not have any input/output instructions. Nor are we
about to add any now. It does not need them. Instead, the machine will use
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Binary Mnemonic Instruction Meaning
0000xxxxxxxxxxxx | LODD | Load direct ac:=m{x]
0001xxxxxxxxxxxx | STOD | Store direct m[x]:=ac
0010xxxxxxxxxXxx | ADDD Add direct ac:=ac+m[x]
007 Txxxxxxxxxxxx | SUBD | Subtract direct ac:=ac-m(xj
0100xxxxxxxxxxxx | JPOS Jump positive ifac 2 0 then pc:= x T
010 1xxxxxxxxxxxx | JZER Jump zero ifac = 0 then pc := x
0110xxxxxxxXXXxXX | JUMP Jump pci=x
011 Ixxxxxxxxxxxx | LOCO Load constant ac :=x(0< x < 4095)
1000xxxxxxxxxxxx | LODL | Load local ac:=misp+x]
100 Txxxxxxxxxxxx | STOL Store local m[x+spli=ac
1010xxxxxxxxxxxx | ADDL | Add local ac:=ac+mlsp+x]
107 Ixxxxxxxxxxxx | SUBL | Subtract local ac:=ac-mlsp+xj
1100xxxxxxxxxxxx | JNEG Jump negative if ac< Othen pc :=x
T101xxxxxxxxxxxx | JNZE Jump nonzero if ac 0 then pc :=x
T110xxxxxxxxxxxx | CALL Call procedure Spi=sp-1; mlspl:=pc; pc:=x
1111000000000000 | PSHI Push indirect Spi=sp- 1, misp]:=mjlac]
1111001000000000 | POPI Pop indirect mlac]:=m[sp]; sp:=sp +1
1111010000000000 | PUSH Push onto stack Spi=sp- 1, m(sp]:=ac
1111011000000000 | POP Pop from stack ac:=mlsp};sp:=sp +1
1111100000000000 | RETN | Return pc :=mlspl; sp:=sp +1
1111101000000000 | SWAP Swap ac, sp tmp :=ac;ac:=sp;sp:=tmp
11111100yyyyyyyy | INSP Increment sp Spi=sp+y (0 <y < 255)
11111110yyyyyyyy | DESP Decrement sp spi=sp-y (0 <y<255)

XXXXXXXXXXXX is @ 12-bit machine address; in column 4 itis called x.
YYYYYYy is an 8-bit constant; in column 4 it is called y.

Fig. 4-14. The Mac-1 instruction set.

memory-mapped I/O. A read from address 4092 will yield a 16-bit word with the
next ASCII character from the standard input device in the low-order 7 bits and
zeros in the high-order 9 bits. When a character 1s available in 4092, the high-order
bit of the input status register, 4093, will be set. Reading 4092 clears 4093. The
input routine will normally sit in a tight loop waiting for 4093 to go negative.
When it does, the input routine will load AC from 4092 and return.
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Output will be done using a similar scheme. A write to address 4094 will take
the low-order 7 bits of the word written and copy them to the standard output dev-
ice. The high-order bit of the output status register, word 4095, will then be
cleared, coming back on again when the output device is ready to accept a new
character. Standard input and output may be a terminal keyboard and visual
display, or a card reader and printer, or some other combination.

As an example of how one programs using this instruction set, see Fig. 4-11(b),
which is the program of Fig. 4-11(a) compiled to assembly language by a compiler
that does no optimization at all. (Optimized code would make the example hard to
follow.) The numbers 0 to 19 in the comments, indicated by a slash in the assembly
language, are intended to make it easier to link up the two halves of the figure.
OUTNUMI1 and STOP are library routines that perform the obvious functions.

4.4. AN EXAMPLE MICROPROGRAM

Having specified both the microarchitecture and the macroarchitecture in detail,
the remaining issue is the implementation: What does a program running on the
former and interpreting the latter look like, and how does it work? Before we can

answer these questions, we must carefully consider in what language we want to do
our microprogramming.

4.4.1. The Micro Assembly Language

In principle, we could write microprograms in binary, 32 bits per microinstruc-
tion. Masochistic programmers might even enjoy that; certainly nobody else
would. Therefore, we need a symbolic language in which to €Xpress micropro-
grams. One possible notation is to have the microprogrammer specify one microin-
struction per line, naming each nonzero field and its value. For example, to add AC
to A and store the result in AC, we could write

ENC=1,C=1,B=1,A=10

Many microprogramming languages look like this. Nevertheless, this notation is
awful and so are they.

A much better idea is to use a high-level language notation, while retaining the
basic concept of one source line per microinstruction. Conceivably, one could
write microprograms in an ordinary high-level language but because efficiency is
crucial in microprograms, we will stick to assembly language, which we define as a
symbolic language that has a one-to-one mapping onto machine instructions.
Remember that a 25% inefficiency in the microprogram slows the entire machine
down by 25%. Let us call our high-level Micro Assembly Language “MAL,”
which is French for “sick,” something you become if you are forced to write oo
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many intricate microprograms for idiosyncratic machines. In MAL, stores into the
16 scratchpad registers or MAR and MBR are denoted by assignment statements.
Thus the example in MAL above becomes ac :=a + ac. (Because our intention is

to make MAL Pascal-like, we will adopt the usual Pascal convention of lowercase
italic names for identifiers.)

To indicate the use of the ALU functions 0, 1, 2, and 3, we can write, for exam-
ple,

ac :=atac, a:=band(ir, smask), ac :=a, and a = inv(a)

respectively, where band stands for “Boolean and” and inv stands for invert.

Shifts can be denoted by the functions Ishift for left shifts and rshift for right shifts,
asin

tir = Ishift (tir + tir)

which puts tir on both the A and B buses, performs an addition, and left shifts the
sum 1 bit left before storing it back in tir.

Unconditional jumps can be handled with goto statements; conditional jumps
can test n or z; for example,

if n then goto 27

Assignments and jumps can be combined on the same line. However, a slight

“ problem arises if we wish to test a register but not make a store. How do we

specify which register is to be tested? To solve this problem we introduce the

pseudo variable alu, which can be assigned a value just to indicate the ALU con-
tents. For example,

alu := tir; if n then goto 27

means fir is to be run through the ALU (ALU code = 2) so its high-order bit can be
tested. Note that the use of alu means that ENC = 0.

To indicate memory reads and writes, we will Just put rd and wr in the source
program. The order of the various parts of the source statement is, in principle,
arbitrary but to enhance readability we will ry to arrange them in the order that

they are carried out. Figure 4-15 gives a few examples of MAL statements along
with the corresponding microinstructions.

4.4.2. The Example Microprogram

We have finally reached the point where we can put all the pieces together.
Figure 4-16 is the microprogram that runs on Mic-1 and interprets Mac-1. It is a
surprisingly short program—only 79 lines. By now the choice of names for the
scratchpad registers in Fig. 4-8 is obvious: PC, AC, and SP are used to hold the
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:;1 8 A M M E
U N L S B A R W N
Statement X D U H R R D R C C B AADDR

mar:= pc;rd 0Ojo0|2 (0|01 0|0 00|00
rd 0ofof2j0jo0jo0|1j0|0|0]|0jo0]|00
ir :== mbr 1{0fj2j0jo0ojojojo0o|1|{3]0]o0]|o00
pc := pc +1 ojojofojojofojof1|{0(|6]0/|00
mar:= ir; mbr:=ac; wr ofof2fof1]1]0j1]0]0|3]|1]o00
alu :=tir; if n then goto 15 oj1]2|o0flofofojoflofo|o}|4]15
ac := inv {mbn 1(f0)j3jofojofojo|1|1|0]o0]|o00
tir := Ishift (tir), fnthengoto25 |0 |1 |2 |2|o]o|lo|lo|1]4|0]a]l2s
alu := ac; if z then goto 22 0Oj2|2f(ofojojojojofofo}|1]22
ac :=band (ir, amask); goto 0 oj3f(1j0jojojojo|1]|1]|8]|3]/{o00
sp:=sp+(-1); rd o|jojofofofof{1iof|1|{2|2]|7/1lo0
tir := Ishift(ir+ir; ifnthengoto69 | 0 |1 (0|2 |0o|o|ofo|1]|4]|3]|3]es

Fig. 4-15. Some MAL statements and the corresponding microinstructions.

three Mac-1 registers. IR is the instruction register and holds the macroinst‘ruction
currently being executed. TIR is a temporary copy of IR, used for dccodlqg the
opcode. The next three registers hold the indicated constants. AMASK is Fhe
address mask, 007777 (octal), and is used to separate out opcode and address bits.
SMASK is the stack mask, 000377 (octal), and is used in the INSP and DESP
instructions to isolate the 8-bit offset. The remaining six registers have no assigned
function and can be used as the microprogrammer wishes.

Like all interpreters, the microprogram of Fig.4-16 has a main loop thf'n
fetches, decodes, and executes instructions from the program being interpreted, in
this case, level 2 instructions. Its main loop begins on line 0, where it begins fetch-
ing the macroinstruction at PC. While waiting for the instruction to arrive, th'e
microprogram increments PC and continues to assert the RD bus signal. When it
arrives, in line 2, it is stored in IR and simultaneously the high-order bit (bit 15) is
tested. If bit 15 is a 1, decoding proceeds at line 28; otherwise, it continues on line
3. Assuming for the moment that the instruction is a LODD, bit 14 is tested on line
3, and TIR is loaded with the original instruction shifted left 2 bits, one using the
adder and one using the shifter. Note that the ALU status bit N is determined by
the ALU output in which bit 14 is the high-order bit, because IR + IR shifts IR left
1 bit. The shifter output does not affect the ALU status bits.

All instructions having 00 in their two high-order bits eventually come to line 4
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to have bit 13 tested, with the instructions beginning with 000 going to line S and
those beginning with 001 going to line 11. Line 5 is an example of a microinstruc-
tion with ENC = 0; it just tests TIR but does not change it. Depending on the out-
come of this test, the code for LODD or STOD is selected.

For LODD, the microcode must first fetch the word directly addressed by load-
ing the low-order 12 bits of IR into MAR. In this case the high-order 4 bits are all
zero but for STOD and other instructions they are not. However, because MAR is
only 12 bits wide, the opcode bits do not affect the choice of word read. In line 7,
the microprogram has nothing to do, so it just waits. When the word arrives, it is
copied to AC and the microprogram jumps to the top of the loop. STOD, ADDD,

and SUBD are similar. The only noteworthy point concerning them is how subirac-
tion is done. It uses the fact that

X-y=x+(=y)=x+@G+)=x+1+y

in two’s complement. The addition of 1 to AC
otherwise be wasted like line 13,

The microcode for JPOS begins on line 21. If AC < 0, the branch fails and the
JPOS is terminated immediately by jumping back to the main loop. If, however,
AC 20, the low-order 12 bits of IR are extracted by ANDing them with the 007777
mask and storing the result in PC. It does not cost anything extra to remove the
opcode bits here, so we might as well do it. If it had cost an extra microinstruction,
however, we would have had to look very carefully to see if having garbage in the
high-order 4 bits of PC could cause trouble later.

In a certain sense, JZER (line 23) works the opposite of JPOS. With JPOS, if
the condition is met, the Jump fails and control returns to the main loop. With
JZER, if the condition is met, the Jjump is taken. Because the code for performing
the jump is the same for all the jump instructions, we can save microcode by just
going to line 22 whenever feasible. This style of programming would generally be

considered uncouth in an application program, but in a microprogram no holds are

barred. Performance is everything,

JUMP and LOCO are straightforward, so the next interesting execution routine
is for LODL. First, the absolute memory address to be referenced is computed by
adding the offset contained in the instruction to SP. Then the memory read is ini-
tiated. Because the rest of the code is the same for LODL and LODD, we might as
well use lines 7 and 8 for both of them. Not only does this save control store with
no loss of execution speed but it also means fewer routines to debug. Analogous
code is used for STOL, ADDL, and SUBL. The code for INEG and JNZE is simi-
lar to JZER and JPOS, respectively (not the other way around). CALL first decre-
ments SP, then pushes the return address onto the stack, and finally jumps to the
procedure. Line 49 is almost identical to line 22; if it had been exactly the same,
we could have eliminated 49 by putting an unconditional jump to 22 in 48. Unfor-
tunately, we must continue to assert WR for another microinstruction.

is done on line 16, which would
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cmar 2= pcord
pci=pc+ lrd;

2ir 2= mbr if n then goto 25;
ur = Ishift (ir + ir); if n then goto 19;
ar .= Ishift (tir ); if n then goto 11;

alu = ur; if n then goto 9;
mar = 1r;rd;
rd;
s ac = mbr; goto O,
mar 1= ir; mbr .= ac; wr;
wr; goto 0,
calu = 1r; if n then goto 15;
smar = irrd;
rd;
ac = mbr + ac; goto 0,
mar = ir;rd,

ac = ac + l;rd;
a = inv(mbr);
ac = ac + a; goto 0

ur 2= Ishift (1ir ); if n then goto 25;
alu = 1ir; if n then goto 23;

s alu = ac ) if n then goto 0;

: pc 1= band (ir , amask ); goto 0,
alu = ac; if z then goto 22;
goto O;
alu := ur; if n then goto 27;.

pc := band (ir , amask ), goto 0,
ac .= band (ir , amask ), goto 0;

tr := Ishift (ir + ir); if n then goto 40;
r := Ishift (tir ); if n then goto 35,
alu := ur; if n then goto 33;

a:=ir+sp;

smar = a;rd; goto 7,

a:=ir+sp;

mar .= a;, mbr := ac; wr; goto 10;
alu = 1ir ; if n then goto 38;
a:=dr tosp;

mar := a; rd; goto 13;

38:a:=1ir+ sp;
39: mar := a; rd; goto 16;

{main loop}
{increment pc}
{save, decode mbr}

{000x or 001x?}
{0000 or 00017}

{0000 = LODD}
{0001 = STOD}

{0010 or 00117}
{0010 = ADDD}

]

{0011 = SUBD}
{Note: x —y = x + 1 + not y}

{010x or 011x?}
{0100 or 01017}

{0100 = JPOS}
{perform the jump}

{0101 = JZER}
{jump failed}

{0110 or 01117}
{0110 = JUMP}

{0111 = LOCO}

{10xx or 11xx?}
{100x or 101x?}
{1000 or 10017}

{1000 = LODL}

{1001 = STOL}

{1010 or 10117}
{1010 = ADDL}

{1011 = SUBL}

Fig. 4-16. The microprogram.
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40: tir := Ishift (tir ); if n then goto 46;
41: alu := tir; if n then goto 44;

42: alu := ac; if n then goto 22;

43: goto 0;

44 alu = ac; if z then goto 0;

45: pc := band (ir , amask ); goto 0,
46: tir .= Ishift (tir ); if n then goto 50;
47:sp = sp + (—1);

A8: mar := sp; mbr:= pc; wr:

49: pc := band (ir , amask ); wr; goto O;
50: tir <= Ishift (tir ); if n then goto 65;
S1: tir := Ishift (tir ); if n then goto 59;
52: alu := tir; if n then goto 56;
S53:mar = ac; rd;
Sd:spi=sp+(—1);rd;

55: mar ;= sp ; wr; goto 10;

56: mar :=sp;sp:=sp + 1; rd;

5T rd;

58: mar := ac; wr: goto 10,

59: alu := tir; if n then goto 62;

60: sp :=sp + (—1);

61: mar := sp; mbr := ac; wr; goto 10;
62 mar = sp;sp:=sp + 1; rd;

63: rd;

64: ac := mbr; goto 0;

65: tir := Ishift (tir ); if n then goto 73;
66: alu := tir; if n then goto 70;

67: mar .= sp; sp = spt+ 1 rd;

68: rd;

69: pc 1= mbr ; goto 0;

70:a:= ac;

Tl:ac:= sp,

72: sp := a; goto 0;

73: alu := tir; if n then goto 76;

74: a := band (ir , smask ),

75:sp :=sp + a; goto 0,

76: a := band (ir , smask );

77 a = inv(a);

78:a:=a + I, goto 75;

Fig. 4-16. (cont.)

{110x or 111x7}
{1100 or 11017}

{1100 = JNEG}

{1101 = INZE}

{1110 = CALL}

{1111, examine addr}

{1111000 = PSHI}

{1111001 = POPI}

{1111010 = PUSH}

{1111011 = POP}

{1111100 = RETN}

I

{1111101 = SWAP}

{1111110 = INSP}

{1111111 = DESP}
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The rest of the macroinstructions all have 1111 as the high-order 4 bits, so
decoding of the “‘address bits” is required to tell them apart. The actual execution
routines are straightforward so we will not comment on them further.

4.4.3. Remarks about the Microprogram

Although we have discussed the microprogram in considerable detail, a few
more points are worth making. In Fig. 4-16 we increment PC in line 1. It could
equally well have been done in line 0, thus freeing line 1 for something else while
waiting. In this machine there is nothing else to do but in a real machine the
microprogram might use this opportunity to check for I/O devices awaiting service,
refresh dynamic RAM, or something else.

If we leave line 1 the way it is, however, we can speed up the machine by modi-
fying line 8 to read

mar = pc; ac .= mbr; rd; goto 1;

In other words, we can start fetching the next instruction before we have really
finished with the current one. This ability provides a primitive form of instruction
pipelining. The same trick can be applied to other execution routines as well.

It is clear that a substantial amount of the execution time of each macroinstruc-
tion is devoted to decoding it bit by bit. This observation suggests that it might be
useful to be able to load MPC under microprogram control. On many existing
computers the microarchitecture has hardware support for extracting macroinstruc-
tion opcodes and stuffing them directly into MPC to effect a multiway branch. If,
for example, we could shift the IR 9 bits to the right, clear the upper 9 bits, and put
the resulting number into MPC, we would have a 128-way branch to locations 0 to
127. Each of these words would contain the first microinstruction for the
corresponding macroinstruction. Although this approach wastes control store, it
speeds up the machine greatly, so something like it is nearly always used in prac-
tice.

We have not said a word about how /O is implemented. Nor do we have to.
By using memory mapping, the CPU is not aware of the difference between true
memory addresses and I/O device registers. The microprogram handles reads and

writes to the top four words of the address space the same way it handles any other
reads and writes.

4.4.4. Perspective

The time seems appropriate to stop for a minute and reflect on what micropro-
gramming is all about. The basic idea is to start out with a simple hardware
machine. In our example, it consists of little more than 22 registers, a small ROM
for the control store, a glorified adder, an incrementer, a shifter, and some
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combinational circuitry for multiplexing, decoding, and sequencing. Using this
hardware we were able to construct a software interpreter for carrying out the
instructions of a level 2 machine. With the aid of a compiler, we can translate
high-level language programs to level 2 instructions and then interpret these
instructions one at a time.

Thus to run a program written in a high-level language, we must first translate it
to level 2, and then interpret the resulting instructions. Level 2 effectively serves as
an interface between the compiler and the interpreter. Although in principle the
compiler could generate microcode directly, doing so is complicated and wasteful
of space. Each of our macroinstructions occupies one 16-bit word, whereas the
corresponding microcode, excluding the instruction decoding logic, requires about
four 32-bit microinstructions, on the average. If we were to compile directly to
level 1, the total storage needed would increase about eightfold. Furthermore, the
increased storage needed is writable control store, which is far more expensive due
to its high speed. Using main memory for microcode is not desirable because it
results in a slow machine.

In light of these concrete examples, it should be clear why machines are now
normally designed as a series of levels. It is done for efficiency and simplicity,
because each level deals with another level of abstraction. The level O designer
worries about how to squeeze the last few nanoseconds out of the ALU by using
some spiffy new algorithm to reduce carry-propagation time. The microprogram-
mer worries about how to get the most mileage out of each microinstruction, typi-
cally by exploiting as much of the hardware’s inherent parallelism as possible. The
macroinstruction set designer worries about how to provide an interface that both
the compiler writer and microprogrammer can learn to love, and be efficient at the
same time. Clearly, each level has different goals, problems, techniques, and, in
general, a different way of looking at the machine. By splitting the total machine
design problem into several subproblems, we can attempt to master the inherent
complexity in designing a modern computer.

4.5. DESIGN OF THE MICROPROGRAMMING LEVEL

Like just about everything else in computer science, the design of the micro-
architecture is full of trade-offs. In the following sections we will look at some of
the design issues and the corresponding trade-offs.

4.5.1. Horizontal versus Vertical Microprogramming

Probably the key trade-off is how much encoding to put in the microinstruc-
tions. If one were to build the Mic-1 on a single VLSI chip, one could ignore the
abstractions such as registers, ALU, and so on, and just look at all the gates. To
make the machine run, certain signals are needed, such as the 16 OE signals to gate



