
Correctness of Functionally Specified Denotational
and Operational Semantics

Sjaak Smetsers1, Ken Madlener1, and Marko van Eekelen1,2

{S.Smetsers,K.Madlener,M.vanEekelen}@cs.ru.nl
1 Institute for Computing and Information Sciences

Radboud University Nijmegen
2 School of Computer Science

Open University of the Netherlands

Abstract. Both operational and denotational semantics are popular ap-
proaches for reasoning about properties of programs and programming lan-
guages. Each semantics has its own specific aims and applications, and
studying the relation between them allows the exploitation of benefits of
both styles. This paper presents a common functionally specified formal-
ization of these styles. As specification language we use the theorem prover
Pvs. This enables both the execution of the specified functions and the
formal proving of properties such as adequacy. The underlying approach
applies categorical work of Turi and Plotkin, proving the adequacy theo-
rem in a uniform setting (the GSOS format). The main characteristic of
the present set-up is that the proof of this theorem is syntax indepen-
dent: it is not restricted to a specific programming language. This creates a
framework giving the opportunity to formally prove properties about both
programming languages in general and specific programs. The power of this
framework lies in having the option of choosing between denotational and
operational semantics at will, within just one single functional setting.
Keywords and phrases: functional specification, operational semantics, de-
notational semantics, bialgebras, distributive laws, adequacy, theorem prov-
ing, Pvs

1 Introduction

Formal definitions of programming languages consist of an implementation indepen-
dent description of both the syntax and the semantics of programs. The description
can be used not only to prove correctness of specific programs but also to develop
metatheory providing a collection of general program independent properties. The
latter can be a very convenient foundation for building implementations.

The formal definition of a real-world programming language can take colossal
proportions. The process of verifying metatheory often exceeds human capabilities;
due to its inherent complexity, development time often grows exponentially. The
best alternative for complete verification is to employ well-established methods,
such as type systems and operational/denotational semantics.

Functional programming languages are successfully used, not only as power-
ful programming tool, but also as a formalism to specify the semantics of newly
developed language concepts [12, 23, 11], system descriptions [21], and abstract
machines [13]. The fact that these functional specifications are executable is very

useful as a first step towards a full formalization and to get a good grip on the
technicalities involved. Despite their expressiveness, functional languages cannot
prevent that occasionally errors and inconsistencies arise that may not be easily
discovered via execution. A promising approach in reducing these errors is to use
mechanized verification tools. These verification tools are usually based on classi-
cal, typed higher-order logic. The (functional) specification languages of these tools
provide automatic code generation from functional specifications, which enables the
execution of such specifications. This feature is often used as an additional check of
the developed concepts, before one starts with formally proving properties of these
concepts.

Such functional specifications are often operational semantics. Denotational se-
mantics are generally specified mathematically specifying the mathematical mean-
ing of language concepts. Ideally, both denotational and operational semantics are
defined and their conformance (adequacy) is formally proven. Generally, such ade-
quacy proofs are done informally. Examples of that are e.g. Launchbury’s natural
semantics for lazy evaluation [14] and the editor arrow framework semantics by
Achten et al. [1].

In this paper, we present a formalization of both popular styles of semantic
specifications: (structural) operational semantics and denotational semantics. In-
spired by a recent category theoretic Coq formalisation [17], this paper provides a
metatheoretic framework in the Pvs theorem prover by introducing a functional,
executable specification of both denotational and operational language semantics.

The approach is based on a framework developed by Turi and Plotkin [22]
unifing both styles of semantics. By exploiting the language of category theory,
they managed to disassociate from language-specific details such as concrete syntax
and behavior. Given a set of operational rules, they derived both operational and
denotational semantics using a distributive law corresponding to a set of operational
rules. The format in which these operational rules are specified is known as the
GSOS format; see [3].

The contribution of our work is twofold. Several years ago the PoplMark
challenge was launched calling for experiments on verifications of metatheory and
semantics using proof tools. Various researchers have answered this appeal, which
has led to implementations of a specific type system in most of the state-of-the-art
theorem provers available. However, until now no implementation has developed in
Pvs; the development has been constrained to only a few metatheoretical experi-
ments. This is a privation, because Pvs has shown to be very successful in proving
properties of computer programs. In this paper, we investigate whether Pvs is ad-
equately suited for developing metatheory. In our attempt, we extend to an even
higher abstraction level, namely we use Turi and Plotkin’s categorical description
as the point of inception. Our main goal is to formally prove that the construc-
tion indicated by [22] is sound, resulting in the so-called adequacy theorem. The
second contribution is a Pvs formalization providing a framework for facilitating
both formal reasoning about and experimentation with semantics of programming
languages allowing the user to choose between either denotational or operational
semantics at any point.

Section 2 describes the relation between operational and denotational seman-
tics which is roughly based on the categorical framework of Turi and Plotkin.
For a simple language, both an operational and a denotational model is specified,

and the equivalence of these models is proven. In order to enhance expressivity,
we first generalize terms in Section 3. Subsequently in Section 4, operational and
denotational models are defined generically using bialgebras in order to prove the
adequacy theorem in a syntax-independent manner. Finally in Section 5, to achieve
a fully general formalization of the framework, we introduce the expressive GSOS
format. We conclude with related and future work.

All definitions and theorems given in this paper have been formalized and proven
in Pvs. The files of the development can be obtained via http://www.cs.ru.nl/

~sjakie/papers/adequacy/.

2 Background

We start with a brief introduction to the framework of Turi and Plotkin. To avoid
getting enmeshed in category theory right from the start, we follow the approach
as, for instance, taken by [8] and [9] who explain and illustrate the technicalities
with definitions and examples written in Haskell.

We use a very simple language about streams (see also [10]), of which the op-
erational rules are given in Figure 1. These rules inductively define a transition
relation on T× L× T, where T, L denote the sets of closed terms, and outputted
labels, respectively. The two basic operations AS and BS generate constant (in-
finite) streams of As and Bs whereas the operation Alt yields an alternation of
two streams, by repeatedly taking the head of its first argument, and calling itself
recursively on the swapped tails. The Zip function behaves similarly to Alt except
that it does not discard the label of the second stream argument. At first instance
we will ignore the rule for Zip. The first step in the formalization of such a language
is to express both the signature and behaviour (i.e. the result of an operation) of
the operations as functors. In Haskell, we can model a functor as a datatype.
The map that is inextricably interlaced with such a functor is defined by making
the data type an instance of the Functor type class.

class Functor f where
fmap :: (a→ b)→ f a→ f b

The signature functor is then defined by the following data type and instance
definition:

data Σ p = AS | BS | Alt p p

instance Functor Σ where
fmap f AS = AS
fmap f BS = BS
fmap f (Alt p1 p2) = Alt (f p1) (f p2)

Similarly, we represent the behaviour functor as follows. Here L corresponds to our
label set, and the functor B just pairs a label from L with p.

data L = A | B
data B p = L : ∗ : p

instance Functor B where
fmap f (l : ∗ : p) = l : ∗ : f p

AS
A−→AS BS

B−→BS

x
l−→ x′ y

m−→ y ′

Alt x y
l−→Alt y ′ x′

x
l−→ x′

Zip x y
l−→Zip y x′

Fig. 1. A simple language for streams.

The set of terms T over a signature functor f is defined as:

data T f = App (f T)

As Pvs does not support (higher-order) polymorphism this general approach can-
not be followed. Instead we will mimic the same intentions with the aid of param-
eterized theories. We start with the set of terms, which are defined by:

T [F : type, % for operations
ar : [F → nat]] : % for arity of operations

datatype begin
tapp (op : F, args : [below (ar (op))→ T]) : tapp ?

end T

The data type is parametric in the signature which is represented by F, ar. The
following theory introduces the notion of Σ-algebra, which is essentially a pair
consisting of an object X (called the carrier of the algebra), and a structure map
Σ(X)→ X . In the Pvs specification the argument object X of the functor Σ is left
implicit. At the same time, we introduce a general operation for processing terms
that avoids explicit recursion (and facilitates equational reasoning, as we shall see
later on), here called foldT; see also [19].

Algebras [F : type, ar : [F → nat],X : type] : theory begin
importing T [F, ar]

Σ : type = [f : F, [below (ar (f))→ X]]
Alg : type = [Σ→ X]

foldT (a : Alg) (t :T) : X = reduce (a) (t)
end Algebras

Observe that foldT is just a re-definition of reduce which is part of a theory auto-
matically generated by Pvs when T is typechecked.

In the representation of the behaviour functor B we anticipate on the fact that
the terms are executed according to the operational rules of the language. This
execution yields an infinite stream of labels. Categorically, this stream is obtained
by taking the greatest fixpoint of B leading to the final coalgebra of the category
of B-coalgebras. By introducing the following (co)datatype this is straightforward
in Haskell.

codata N f = N (f (N f))

unfold :: Functor b⇒ (x → b x)→ x → N b
unfold g = N ◦ fmap (unfold g) ◦ g

To express this in Pvs we use Pvs’s capability to introduce co-inductive datatypes.
However, we cannot define N as above, since this would require some sort of higher-
order polymorphism. Instead, we define N B directly as a codata type, named νB,
and extract the functor B from this definition. In fact, no definitions are required
to obtain B: it is automatically generated from the definition of the codatatype,
together with the unfold operation (named coreduce).

νB [L : type] : codatatype begin
nb in (el : A,next : νB) : nb in ?

end νB

A coalgebra is the dual of an algebra: for a functor B, the coalgebra consists of
an object D and a structure map D → B(D). In the Pvs specification, the object
argument D of B is again left implicit.

Coalgebras [L,D : type] : theory begin
importing νB [A]

B : type = NB struct [L,D]
CoAlg : type = [D → B]

outνB (nb : νB) : B(νB) = inj nb in (el (b),next (b))

unfold (c : CoAlg) (z : D) : νB = coreduce (c) (z)
end Coalgebras

The functor B and operation unfold coincide with the generated record NB struct
and the (coinductive) function coreduce. As the components of NB struct (as can
be seen in the definition of outνB), are also used, we give its definition that is gener-
ated by Pvs (L,D have been substituted for the corresponding theory parameters).

NB struct : datatype begin
inj nb in (inj el : L, inj next : D) : inj nb in ?

end NB struct

For our concrete language we give an appropriate instance of Σ:

LANG : theory begin
Symbol : type = {A,B,Alt}
L : type = {AL,BL}
ar (s : Symbol) : nat =
cases s of
A : 0,
B : 0,
Alt : 2

endcases
end LANG

Now all the ingredients are available to represent the operational semantics of
the example language in Pvs.

OM : theory begin
binapp (op : {s : Symbol | ar (s) = 2}, a1, a2 :T) :T =

tapp (op,λ (i : below (2)) : if i = 0 then a1 else a2 endif)

om (t :T) : recursive B =
cases t of
tapp (oper, args) :
cases oper of
A : inj bin (AL, tapp (A, args)),
B : inj bin (BL, tapp (B, args)),
Alt : let r0 = om (args (0)),

r1 = om (args (1))
in inj nb in (inj el (r0),binapp (Alt, inj next (r1), inj next (r0)))

endcases
endcases

measure t BY <<
end OM

Observe that om has type [T→ B] which is identical to Coalg (with T as carrier).
This enables the execution of a term t by (co-iteratively) unfolding om (t):

run (t :T) : νB = unfold (om) (t)

In [22] the denotational semantics is considered as the dual version of the oper-
ational semantics. The underlying denotational model dm essentially maps each
syntactic construct to a mathematical object describing the effect of executing
that construct; e.g. see [20]. In the present example this mathematical object is a
function (X → νB) → νB, so dm : (Σ X) → (X → νB) → νB, which in turn is
isomorphic to dm : (Σ νB)→ νB, (e.g. see [16] for a categorical explanation of this
property of parametric models). We will use the latter, algebraic format (observe
that dm is a Σ-algebra with νB as carrier) in the following Pvs specification:

DM : theory begin
Unit : datatype begin unit : unit ? end Unit

constCoalg (l : L) : Coalg [L,Unit] = λ (x : Unit) : inj nb in (l, x)
const (l : L) : B = unfold (constCoalg (l)) (unit)

altCoalg : Coalg [L, [νB, νB]] =
λ (xy : [νB, νB]) : let x = xy ‘1, y = xy ‘2
in inj nb in (el (x), (next (y),next (x)))

alt (x, y : νB) : νB = unfold (altCoalg) ((x, y))

dm (sf : Σ) : νB =
cases sf ‘1 of

A : const (AL),
B : const (BL),
Alt : alt (sf ‘2 (0), sf ‘2 (1))

endcases
end DM

Evaluation is obtained by folding the algebra dm:

eval (t :T) : νB = foldT (dm) (t)

For these specific semantic models we can prove the adequacy theorem:

run is eval : theorem ∀ (t :T) : run (t) = eval (t)

The proof proceeds by a mix of induction (on T) and coinduction (on νB). Although
the proof itself is not very difficult, it is syntax-dependent and therefore rather ad
hoc: choosing a different language would change the proof significantly. In the next
sections we present a more structured approach.

3 Generic terms

To prepare for the more general bialgebraic treatment of semantics, we extend the
representation of terms with variables:

T [V : type,F : type, ar : [F → nat]] : datatype begin
tvar (var id : V) : tvar ?
tapp (op : F, args : [below (ar (op))→ T]) : tapp ?

end T

Those who are familiar with this subject will probably recognize T as the free
monad generated by the signature functor corresponding to (F, ar). T itself is also
a functor, and the object map for T is again generated automatically by Pvs,
together with an adjusted folding operation. To fit in with standard terminology
we rename the generated operation to foldT:

foldT (e : [V → X], a : Alg) (t :T) : X = reduce (e, a) (t)

Here Alg is the same as defined in the previous section.
The following property is based on the categorical fact that tapp (which is an

algebra for the functor Σ) is initial.

fold unique : proposition ∀ (e : [V → X], a : Alg , g : [T→ X]) :
g ◦ tapp = a ◦ mapΣ (g) ∧ g ◦ tvar = e ⇒ g = foldT (e, a)

This uniqueness property appears to be very useful as an alternative for structural
induction in proofs of properties on terms. In fact, it allows for a direct translation
of diagrammatic proofs into a Pvs formalization. In our experience, these (hand-
drawn) diagrammatic proofs are indispensable as the initial and most important
step towards a fully formalized proof.

First, we show that T is a monad in the categorical sense. Note that Haskell
introduces the concept of monad as a type class consisting of two overloaded oper-
ations return and bind. It is also possible to define a monad in terms of two other
operations, unit and join, of which unit is the same as return. This formulation fits
closely with the definition of monads in category theory. Concretely, we define unit
and join by3:

TMonad [V ,F : type, ar : [F → nat]] : theory begin
T(V) : type = T [V ,F, ar]
T2(V) : type = T [T(V),F, ar]

3 We occasionally deviate from Pvs’s syntax, in particular when specifying signatures of
functions, which are treated as if they were polymorphic.

unitT (v : V) :T(V) = tvar (v)
joinT (t :T2(V)) :T(V) = foldT (id, tapp) (t)

end TMonad

From category theory we borrow the notion T-algebra, which will later be used
to introduce an alternative proof principle for folding. A T-algebra (or, more ver-
bosely, an algebra for the T monad) is a ‘plain’ algebra with two additional prop-
erties. In Pvs:

TAlg ? (h : [T(V)→ V]) : bool =
h ◦ unitT = id ∧ h ◦ mapT (h) = h ◦ joinT

We end this section with a lemma that resembles the uniqueness property of foldT.

Lemma 1. Let k : X → Y and h : T(Y) → Y such that h is a T-algebra. Set
free k h := fold k (h ◦ app ◦ mapT (var)). Then free k h is unique in making the
following diagram commute4 :

X
var //

∀ k
!!

T(X)

free k h

��

T2(X)
joinToo

T (free k h)

��
Y T(Y)

∀ h
oo

We only show that the diagram commutes, and not that free k h is unique.
Before giving a proof in Pvs itself, we develop a diagrammatic version for the ap-
plication case (indicated by the right part of the above diagram) on paper. The idea
is to construct a separate diagram for each side, and subsequently use Proposition
fold unique to show that both compositions can be written as the same application
of foldT. The uniqueness property then yields the desired result.

For the path free k h ◦ joinT we have:

T2(X)

joinT

��
(def. joinT)

Σ(T2(X))
appoo

Σ (joinT)

��
T(X)

free k h

��
(def. free)

Σ(T(X))appoo

Σ (free k h)

��
Y T(Y)

h
oo Σ(T(Y))

app
oo Σ(Y)

Σ (var)
oo

The (correctness of the) subdiagrams used in this diagram follow(s) directly from
the definition of joinT and free. For the path h ◦ mapT (free k h) on the right-hand
side we have:

4 For the diagrams in this paper we adopted the categorical notation for functors by
writing F instead of mapF , for some functor F .

T2(X)

T (free k h)

��
(def.T (free k h))

Σ(T2(X))
appoo

Σ (T (free k h))

��
T(Y)

h

��
(h T-alg.)

T2(Y)
joinToo

T (h)

��
(nat.app)

Σ(T2(Y))
appoo

Σ (T (h))

��
Σ(nat.var)

Σ(T(Y))
Σ (var)oo

Σ (h)

��
Y T(Y)

h
oo Σ(T(Y))

app
oo Σ(Y)

Σ (var)
oo

Proving the subdiagrams used above is just a matter of simple casuistics. Observe
that in both diagrams the paths at the bottom are identical. These diagrams can
be translated directly into Pvs. The main advantage of using diagrams is that
they are constructed in a type driven manner. The operations on the arrows follow
almost directly from the object types. In a pure textually conducted proof, the
type information is usually not taken into account, and hence equational reasoning
is solely based on the operations themselves.

4 Bialgebras

The essence of [22]’s framework is the following: instead of defining the operational
and denotational models separately, the operational rules of the language are de-
scribed by a specific syntactic format from which both semantical models can be
obtained generically (i.e. syntax-independently).

As we have seen in Section 2, the operational model is a B-coalgebra whereas
the denotational model is a Σ-algebra. Such a combination is a special case of a
general categorical concept known as a bialgebra. Formally, a bialgebra (for Σ, B) is
a triple 〈V, a, c〉 such that a is a Σ-algebra and c is a B-coalgebra. For two bialgebras,
a bialgebra homomorphism is a mapping that is both a Σ-algebra homomorphism
and a B-coalgebra homomorphism. We are interested in Λ-bialgebras: bialgebras
equipped with a so-called distributed law Λ. In this section, such a law corresponds
to functions of type Σ(B(V)) → B(Σ(V)). We will show how the operational and
denotational model can be derived for any arbitrary instance of Λ.

The law that represents the operational rules of our simple stream language is
specified by:

Λ (sf : Σ(B(V))) : B(Σ(V)) =
cases sf ‘1 of

B : inj nb in (BL, (B,λ (i : below (0)) : inj next (sf ‘2 (i)))),
A : inj nb in (AL, (A,λ (i : below (0)) : inj next (sf ‘2 (i)))),
Alt : let a0 = sf ‘2 (0), a1 = sf ‘2 (1)
in inj nb in (inj el (a0), (Alt,λ (i : below (2)) :
if i = 0 then inj next (a1) else inj next (a0) endif))

endcases

We now clarify how om and dm are obtained from this law. As to om, suppose we
have a function Γ :V → B(V) that maps each variable to its behaviour. For a given

term, the idea is to use Γ in the variable case, and to apply Λ in the application
case. A first attempt to express this equationally could be:

om ◦ tvar = Γ [1] ∧ om ◦ tapp = Λ ◦ mapΣ (om) [2]

However, the types of om in (1) and (2) are incompatible. We must also remember
that om should yield a result of type T(V)→ B(T(V)). Therefore, we adjust both
the results of Γ and Λ in the following way:

om ◦ tvar = mapB (tvar) ◦ Γ ∧ om ◦ tapp = mapB (tapp) ◦ Λ ◦ mapΣ (om)

Now we can apply Proposition fold unique, and define om as

om (Γ : [V → B(V)]) (t :T(V)) : B(T(V)) =
foldT (mapB (tvar) ◦ Γ, mapB (app) ◦ Λ) (t)

The denotational model is obtained by taking the dual construction of om: foldT
becomes unfold, tapp is replaced by outνB, and composition is reversed. This yields
to

dm (sb : Σ(νB)) : νB = unfold (Λ ◦ mapT (outνB)) (sb)

Running a term according to the operational model, and evaluating a term accord-
ing to the denotational model is done in the same way as in Section 2,

run (Γ : [V → B(V)]) (t :T(V)) : νB = unfold (om (Γ)) (t)
eval (Γ : [V → B(V)]) (t :T(V)) : νB = foldT (unfold (Γ), dm) (t)

To show adequacy, it is sufficient to acknowledge that Λ is a natural trans-
formation, i.e. the concrete definition of Λ for a specific language does not affect
the structure of the proof. Unfortunately, there are not many sensible rules that
fit in this simple format. The Zip rule, for example, cannot be expressed without
violating typability. E.g., the following attempt will not typecheck anymore.

Λ (sf : Σ(B(V))) : B(Σ(V)) =
cases sf ‘1 of
...

Zip : let a0 = sf ‘2 (0), a1 = sf ‘2 (1)
in inj nb in (inj el (a0), (Zip,λ (i : below (2)) :
if i = 0 then a1 else inj next (a0) endif))

endcases

We end this section with a diagram showing the concrete bialgebras used so far,
namely 〈T(V), app, om (Γ)〉 and 〈νB, dm, outνB〉, together with their connecting
homomorphism run (Γ) (which is provably equal to eval (Γ)).

Σ(T(V))
Σ (run (Γ)) //

app

��

Σ(νB)

dm

��
T(V)

run (Γ)
//

om (Γ)

��

νB

outνB

��
B(T(V))

B (run (Γ))
// B(νB)

5 GSOS

For a general approach to formalized semantics, the plain syntactic format as pre-
scribed by the distributive law appeared to be too restrictive. Instead of using
natural transformations from Σ(B(V)) to B(Σ(V)) (distributing a functor over
a functor), we will consider laws that distribute a monad over a functor. More
specifically, our laws are functions with signature T(D(V)) → D(T(V)), where
D(X) = X×B(X), also known as the cofree copointed functor of B. This signature,
however, does not directly match the syntactical format in which the operational
rules are described. This, so-called GSOS-format is slightly more restrictive: the
rules ρ given in this format are functions with type Σ(D(V)) → B(T(V)). We
require that each ρ is a natural transformation, which means that is should satisfy:

rho natural : lemma ∀ (f : [X → Y]) :
ρ ◦ mapΣ (mapD (f)) = mapB (mapT (f)) ◦ ρ

Before giving a Pvs specification of ρ for the complete example language, we have
to remember that the semantic domain (being the greatest fixpoint νD of functor
D)5, cannot be expressed in terms of D. Again, we will define νD as a coinductive
data type, and let PVS generate the corresponding functor D6.

νD [A : type] : codatatype begin
dz in (left : νD, right : [A, νD]) : dz in ?

end νD
Coalgebras [A,X : type] : theory begin

importing νD [A]

D : type = DZ struct [A,X]
B : type = [A,X]
CoAlg : type = [X → D]

outνD (nd : νD) :D(νD) = inj dz in (left (nd), right (dn))

unfold (c : CoAlg) (z : X) : νD = coreduce (c) (z)
end Coalgebras

DMap [A,X ,Y : type] : theory begin
importing Coalgebras [A,X]
importing Coalgebras [A,Y]

mapB (f : [X → Y]) (fb : B [A,X]) : B [A,Y] =
(fb‘1, f (fb‘2))

mapD (f : [X → Y]) (fd :D [A,X]) :D [A,Y] =
inj dz in (f (inj left (fd)), mapB (f) (inj right (fd)))

end DMap

The following property, introduced by [19] as the “fusion law for anamorphisms”,
holds:

5 In this paper we deviate slightly from other approaches which use νB as domain. This
is not an essential difference since one can easily show that νB and νD are isomorphic.

6 We had to ‘inline’ the definition of the behaviour functor B in νD in order to get νD
accepted by Pvs. This explains the tuple type [A, νD] in the right component of νD.

importing Coalgebras [A,X]
importing Coalgebras [A,Y]

unfold fusion : lemma
∀ (f : [X → Y], c : CoAlg [A,X],d : CoAlg [A,Y]) :

mapD (f) ◦ c = d ◦ f ⇒ unfold (c) = unfold (d) ◦ f

We define ρ as follows:

ρ (sf : Σ(D(V))) : B(T(V)) =
cases sf ‘1 of
A : (AL, tapp (A,λ (i : below (0)) : tvar (inj right (sf ‘2 (i))‘2))),
B : (BL, tapp (B, λ (i : below (0)) : tvar (inj right (sf ‘2 (i))‘2))),
Alt : let a0 = sf ‘2 (0), a1 = sf ‘2 (1)

in (inj right (a0)‘1, tapp (Alt,λ (i : below (2)) :
if i = 0 then tvar (inj right (a1)‘2) else tvar (inj right (a0)‘2) endif)),

Zip : let a0 = sf ‘2 (0), a1 = sf ‘2 (1)
in (inj right (a0)‘1, tapp (Zip,λ (i : below (2)) :
if i = 0 then tvar (inj left (a1)) else tvar (inj right (a0)‘2) endif))

endcases

Proving that ρ is indeed a natural transformation is easy, one can simply use
Pvs’s grind strategy.

As with the plain format, naturality of ρ appears to be the only property needed
to prove the adequacy theorem. In Pvs we can exploit this fact by using an ax-
iomatic speciation of ρ. More specifically, ρ itself is redefined as an uninterpreted
function (by omitting the body) whereas ρ’s naturality is expressed as an axiom.
This will prevent unindented use of ρ’s actual implementation while constructing
proofs.

The symmetry of the codomain and domain of Λ appears to be important in
the adequacy proof. In order to obtain a distributive law of T over D, ρ needs to
undergo a two-step transformation. Expanding ρ’s codomain is the first step, using
an auxiliary function toD:

toD (f : [X → T(V)], g : [X → B(T(V))]) (x : X) :D(T(V))
= inj dz in (f (x), g (x))

τ : [Σ(D(V))→ D(T(V))] = toD (tapp ◦ mapΣ (tvar ◦ inj left), ρ)

Adjusting the codomain is slightly more involved, and requires an appropriate use
of foldT:

Λ : [T(D(V))→ D(T(V))] = foldT (mapD (tvar), mapD (joinT) ◦ τ)

This construction does not affect the naturality property, as stated by the following
lemma:

law natural : lemma ∀ (f : [X → Y]) :
Λ ◦ mapT (mapD (f)) = mapT (mapT (f)) ◦ Λ

The proof of this lemma proceeds with structural induction on T(D(V)), using
naturality of ρ, and a well-known fact on joinT, namely joinT ◦ mapT (mapT (f)) =

mapT (f) ◦ joinT. From Λ we derive both om and dm, in a similar manner to the
plain format, as such we write om as a foldT, and dually, dm as an unfold. As to
om, recall that the algebra corresponding to the second argument of foldT will have
type Σ(D(T(V)))→ D(T(V)). The following diagram shows how such an algebra is
obtained from Λ. Again both domain and codomain must be adjusted. To enhance
legibility, we have omitted the brackets in the types as well as the type variable V :

Σ D T
Σ (tvar) //Σ T D T

tapp //T D T Λ //D T T
D (joinT) //D T

For the first argument of foldT is suffices to adjust Γ’s domain only. This can be
done with a simple map leading to

om (Γ : [V → D(V)]) : [T(V)→ D(T(V))] =
foldT (mapD (tvar) ◦ Γ, mapD (joinT) ◦ Λ ◦ tapp ◦ mapΣ (tvar))

Obtaining dm from Λ is less difficult. The coalgebra given as argument to unfold
has type T(νD)→ D(T(νD)), which almost coincides with the type of Λ, after νD
is substituted for V . Only a small adjustment of the codomain to expand νD to
D(νD) (in T(νD)) is necessary. This is done below.

dm : [T(νD)→ νD] = unfold (Λ ◦ mapT (outνD))

The functions run and eval remain the same, bringing us to the main result of this
paper: the adequacy theorem.

run is eval : theorem ∀ (Γ : [V → D(V)]) : run (Γ) = eval (Γ)

The proof of this theorem is done by coinduction on the semantic domain νD. The
coinduction principle in Pvs requires the construction of a proper bisimulation
relation; e.g. see [7]. This principle is based on the fact that if two streams are
bisimilar, then they are equal. The definition of such a bisimulation is in our case
reasonably straightforward. However, proving that it indeed fulfills the bisimula-
tion criteria is more complicated. The crux of the proof is based on the following
commutation property:

T(V)
om //

eval (Γ)

��

D(T(V))

D (eval (Γ))

��
νD

outνD
// D(νD)

For the proof of this property we use of the alternative proof principle for terms
(Lemma 1) using dm as a TMonad, and thus we need to verify the following fact:

dm is T algebra : lemma TAlg ? (dm)

This property consists of two parts. The proof of the first part (bij coinduction
on νD) is straightforward. The proof of the second part (stating that dm ◦
mapT (dm) = dm ◦ joinT) is more subtle. The key to this proof is the unfold fusion
lemma.

6 PVS formalization

One of our motivations for developing this formalization was to investigate whether
or not implementing abstract categorical concepts in Pvs is feasible, and further-
more to reason about these concepts. The case study we performed was based on
previous, similar experiments with Coq. As far as this case study is concerned,
the main difference between Coq and Pvs is that Coq is fully polymorphic, and
equipped with a rich type class system offering type classes as first class citizens. In
Coq, functors, monads, and (co)algebras can be naturally represented. Pvs merely
offers a very rudimentary form of polymorphism via parameterized theories. Using
these parameterized theories as a substitute for Coq’s type classes is definitely a
setback. Nevertheless, for the most part this aspect of our formalization does not
hamper the proving process. There were no fundamental problems which cannot
be solved due to restrictions of Pvs’s specification language. The rich support for
abstract (co)data types (including the facility for automatic generation of common
theories) has shown to be adequate.

There was, however, a minor issue obstructing the proving process to some ex-
tent. When importing a parameterized theory the user must explicitly specify which
actual arguments are required. In a truly polymorphic case this matter would have
been solved by the type checker (as is done in Coq or in Haskell). Moreover,
the type classes used in specifications or in proofs (the original description of [9]
contains numerous occurrences of these) are resolved automatically during type
checking. In fact, the user never has to bother about which overloaded instance is
actually used, which makes programming/proving much easier. Unfortunately, Pvs
lacks the ability for resolving theory instantiations automatically. As a consequence,
the user has to do this by hand. However, even after all overloading has been re-
moved manually, one can still get stuck in seemingly unsolvable cases, especially
when constructing a proof. In the latter case, each formulae is usually displayed
in a legible manner, by omitting the (sometimes lengthy) type information about
symbols. However, this often obstructs equational reasoning; one cannot simply
replace one formulae by another equivalent formulae just by copying the text as it
appears in the proof sequent. The type checker is often not capable of determin-
ing the correct instance type, although this should be evident from the context.
The prover command show-expanded-sequent reveals relevant context informa-
tion about symbols appearing in the proof sequent, but the use of this information
often leads to code explosion even for relatively simple expressions, making proofs
lengthy and very hard to read.

7 Related work

This work was inspired by our earlier work on modularity, the formalization Modu-
lar Structural Operational Semantics (MSOS) [18]. The present paper can be seen
as a contribution to the so-called field of bialgebraic semantics, starting with Turi
and Plotkin’s research [22], and resulting in a uniform categorical treatment of
semantics. They abstracted from concrete syntactical and semantical details by
characterizing these language dependent issues by a distributive law between syn-
tax and behaviour. By means of a categorical construct both an operational and
a denotational model was obtained, and moreover the adequacy of these models

could be proven. In [10] an introduction is given to the basics of bialgebras for
operational semantics that was used in the present formalization. The author of
[10] also sketches the state-of-the-art in this field of research.

The distributive law actually describes a syntactic format for specifying opera-
tional rules. This abstract so-called GSOS format has been applied to several areas
of computer science. For example, in his thesis [2] Bartels gives concrete syntactic
rule formats for abstract GSOS rules in several concrete cases. Variable binding,
which is a fundamental issue in, for example, λ-calculus or name passing π-calculi,
is addressed in [5]. The authors show that name binding fits in the abstract GSOS
format. This was refined further in [6].

In [4] a framework is introduced, called MTC, for defining and reasoning about
extensible inductive datatypes which is implemented as a Coq library. It enables
modular mechanized metatheory by allowing language features to be defined as
reusable components. Similar to our work, MTC’s modular reasoning is based on
universal property of folds [19] offering an alternative to structural induction.

Another interesting line of related work on interpreters, is that of the the ap-
plication of monads in order to structure semantics. Liang et al. [15] introduced
monad transformers to compose multiple monads and build modular interpreters.
Jaskelioff et al. use [9] as a starting point, and provide monad based modular im-
plementation of mathematical operational semantics in Haskell. The authors also
give some concrete examples of small programming languages specified in GSOS-
format. Our Haskell example in Section 2 is inspired by this work. Although, [9]
strictly follows the approach of Turi and Plotkin, there is no formal evidence that
their construction is correct. The latter issue is addressed by recent work of [8] who
introduce modular proof techniques for equational reasoning about monads.

8 Conclusions

We presented a formalization in Pvs of Turi and Plotkin’s work based on category
theory. This resulted in a Pvs framework which can be used for formal reasoning
about programming languages in general, in addition to reasoning about specific
programs. Moreover, it offers the user the possibility to choose between either
denotational or operational semantics at any point in his application.

Our future plans comprise of experimenting with our framework in formal rea-
soning with case studies in specific examples of denotational and operational se-
mantics.

References

1. P. Achten, M. van Eekelen, M. de Mol, and R. Plasmeijer. Editorarrow: An arrow-
based model for editor-based programming. Journal of Functional Programming,
23:185–224, 2 2013.

2. F. Bartels. On generalised coinduction and probabilistic specification formats. PhD
thesis, CWI, Amsterdam, April 2004.

3. B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, Jan. 1995.

4. B. Delaware, B. C. Oliveira, and T. Schrijvers. Meta-theory à la carte. In Pro-
ceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’13, New York, NY, USA, 2013. ACM.

5. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceed-
ings of the 14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99,
pages 193–, Washington, DC, USA, 1999. IEEE Computer Society.

6. M. Fiore and S. Staton. A congruence rule format for name-passing process cal-
culi from mathematical structural operational semantics. In Proceedings of the 21st
Annual IEEE Symposium on Logic in Computer Science, LICS ’06, pages 49–58,
Washington, DC, USA, 2006. IEEE Computer Society.

7. U. Hensel and B. Jacobs. Coalgebraic theories of sequences in pvs. J. Log. Comput.,
9(4):463–500, 1999.

8. R. Hinze and D. W. James. Proving the unique fixed-point principle correct: an
adventure with category theory. SIGPLAN Not., 46(9):359–371, Sept. 2011.

9. M. Jaskelioff, N. Ghani, and G. Hutton. Modularity and implementation of math-
ematical operational semantics. Electron. Notes Theor. Comput. Sci., 229(5):75–95,
Mar. 2011.

10. B. Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011. CMCS Tenth Anniversary Meeting.

11. P. W. M. Koopman, R. Plasmeijer, and P. Achten. An executable and testable se-
mantics for itasks. In S.-B. Scholz and O. Chitil, editors, IFL, volume 5836 of Lecture
Notes in Computer Science, pages 212–232. Springer, 2008.

12. P. W. M. Koopman, R. Plasmeijer, and P. Achten. An effective methodology for
defining consistent semantics of complex systems. In Z. Horváth, R. Plasmeijer, and
V. Zsók, editors, CEFP, volume 6299 of Lecture Notes in Computer Science, pages
224–267. Springer, 2009.

13. P. W. M. Koopman, M. C. J. D. van Eekelen, and M. J. Plasmeijer. Operational
machine specification in a functional programming language. Softw., Pract. Exper.,
25(5):463–499, 1995.

14. J. Launchbury. A natural semantics for lazy evaluation. In M. S. V. Deusen and
B. Lang, editors, POPL, pages 144–154. ACM Press, 1993.

15. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM.

16. S. Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate
Texts in Mathematics. Springer-Verlag, 1971.

17. K. Madlener and S. Smetsers. Gsos formalized in coq. In The 7th International Sympo-
sium on Theoretical Aspects of Software Engineering (TASE2013), 2013. Birmingham,
UK, 2013. IEEE. To appear.

18. K. Madlener, S. Smetsers, and M. C. J. D. van Eekelen. Formal component-based
semantics. In M. A. Reniers and P. Sobocinski, editors, SOS, volume 62 of EPTCS,
pages 17–29, 2011.

19. E. Meijer, M. M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Conference on
Functional Programming Languages and Computer Architecture, pages 124–144, Lon-
don, UK, UK, 1991. Springer-Verlag.

20. H. R. Nielson and F. Nielson. Semantics with applications: a formal introduction.
John Wiley & Sons, Inc., New York, NY, USA, 1992.

21. R. Plasmeijer, P. Achten, and P. W. M. Koopman. itasks: executable specifications
of interactive work flow systems for the web. In R. Hinze and N. Ramsey, editors,
ICFP, pages 141–152. ACM, 2007.

22. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proceed-
ings of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS ’97,
pages 280–, Washington, DC, USA, 1997. IEEE Computer Society.

23. V. Zsók, P. W. M. Koopman, and R. Plasmeijer. Generic executable semantics for
d-clean. Electr. Notes Theor. Comput. Sci., 279(3):85–95, 2011.

