
A Target Implementation for High-Performance

Functional Programs

Sergio Antoy and Andy Jost

Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

ajost@synopsys.com

Abstract. We present a target implementation of a class of functional
logic programming languages. We benchmark the functional component
of our implementation on a small set of simple programs and compare its
performance against the Glasgow Haskell Compiler. The results indicate
that our approach is competitively efficient. We briefly outline the key
characteristics of our implementation: underlying theory, data layout,
memory management, execution, and optimizations.

1 Introduction

Our goal is a high-performance implementation of functional logic programs,
suitable for use as the target of languages such as Curry [11] or T OY [7]. The
evaluation strategy for such languages is the subject of ongoing research, and,
within this area of inquiry, one might ask what a suitable starting point for
implementing and testing new ideas might be. A favorite approach has been to
map the functional logic program to an existing target language in either the
functional [6] or logic [12] domains. This is a reasonable approach, given the
difficulty involved in implementing any programming language, but the solution
is not without its own limitations. For one, it only solves half of the problem. If
the target language provides native support for, say, functional constructs, then
the logic constructs are still left up to the developer (and vice versa). Another
limitation is that it allows details of the underlying language (or its implemen-
tation) to appear in awkward places and ways. For instance, a functional logic
program expressed in Prolog might be inclined to use a backtracking strategy to
handle non-determinism; but this is a major inconvenience when the strategy for
implementing non-determinism is itself in question! Likewise, an implementation
in Haskell may simulate non-determinism by wrapping every type in the target
program, but this approach may add significant overhead [6].

We believe there is a better way. We aim to support both sides of the func-
tional logic paradigm in a unified target implementation that serves as the target
of a language compiler. It should be small and understandable, and highly ef-
ficient so that it serves as a suitable platform for experimentation outside the
bounds of the traditional functional and logic paradigms. Functional logic com-
putations are executed by steps classified as either deterministic (abstracting



the functional component of the paradigm) or non-deterministic (abstracting
the logic component). The majority of the steps of the computation of a typi-
cal program are deterministic. This contribution describes our implementation
of these steps. Non-deterministic steps are conceptually very similar except for
managing the non-deterministic alternatives of a choice. The techniques em-
ployed to this aim, e.g., backtracking or pull-tabbing [3], are largely orthogonal
to the implementation of the steps, and can be selected and added later. In this
way, we may say how our approach compares with existing implementations of
deterministic computations before moving into difficult territory.

2 Benchmark Results

We have coded a prototype demonstrating our target implementation for func-
tional computations. The implementation, code-named Sprite, written in C++,
has been tested on x86 64 hardware running Linux. Our initial results versus the
Glasgow Haskell Compiler (ghc) [9] are shown in Fig. 1. ghc was run with the
-O2 flag to enable optimizations. Of the five benchmarks, rfib and tak come
from both the Haskell NoFib [14] and the KiCS2 [10] benchmark suites, exp3 8

from NoFib only, reverse from KiCS2 only, and tree insert from ViaLOIS
[4]. In some cases the input size has been increased when the program would
otherwise finish too quickly (the Linux time command, which we used to collect
these data, has a resolution of 10 ms).

500

1000

1500

2000

T
im

e
(m

s)

exp3 8 reverse rfib tak tree insert

Fig. 1. Benchmark results. ghc, Sprite. Times are in milliseconds.

The salient features of our target implementation and its prototype are detailed
below in terms of a very simple generic computer system in which we assume
the existence of a few low-level abstractions that are common to most systems:
a native word size that is subdividable and large enough to hold a pointer to
any region of memory; a set of global word-sized registers; and an operating
system that provides basic services, such as for dynamic memory management.
Our aim is to describe the target implementation in a way that can be more-or-

2



less directly mapped to many modern computer systems without committing to
a particular system in the description itself.

Sprite is a prototype of this implementation approach targeted to a specific
computer system consisting of 1) an implementation language (C++), 2) a hard-
ware architecture (x86 64), 3) an application binary interface (AMD64), and 4)
an operating system (Linux). Although Sprite is realized in terms of these par-
ticulars, that fact should in no way detract from the generality of our approach,
much as, say, an implementation of Linux for AMD64 does not take away from
the general usability of Linux on other systems.

3 Target Details

Both theory and practice of the implementation of functional logic languages are
rather specialized. In this section we can only highlight some distinctive features
of our work.

3.1 Underlying Theory

A program is seen as an inductively sequential graph rewriting system [8]. A
node of a graph (also called an expression) abstracts a label (a symbol of the
program signature) and a sequence of successors (the arguments to which the
symbol is applied). A computation is a sequence of rewrite steps. A step replaces
a subexpression (also called the redex ) of the expression being evaluated with a
new expression (called the replacement). A symbol is abstracted by a structure,
described shortly, that stores data, e.g., a node’s successors, and virtual methods,
e.g., for computing a step.

3.2 Data Layout

Nodes are represented in a four-word structure comprising a virtual table pointer
(vptr), one word of metadata, and two word-sized slots. The vptr enables the
familiar mechanism for dispatching type-based actions at run time. The meta-
data field is split into two parts. The first part contains a signed integer called
tag, which indicates the node type. The type distinguishes between defined op-

erations and data constructors of the functional logic program, and a few other
possibilities, such as failures and non-deterministic choices, which are not used
in the work reported in this paper. The second part holds the mark used by the
garbage-collection algorithm.

The pair of slots is used to hold either a data payload or successors. A node
that represents a built-in value (e.g., an integer) places its payload in one or
both slots. If the payload is larger than two words, then the first data slot
instead contains a pointer to the payload. When a node has successors, they are
stored in the slots, the exact layout depending on the arity. For nodes with fewer
than three successors, pointers to the successors are stored directly in the slots.

3



Otherwise, one slot holds a pointer to a dynamically-allocated region of memory
large enough to contain all of the successors.

A rewrite step overwrites a redex in place (destructively) by use of the C++
placement new operator. The rewrite step can and often will change the dynamic
type1 of the redex. In other words, virtual methods invoked at the redex before
and after rewriting may resolve differently. The importance of this will be clear
shortly. For rewriting to work correctly, every node must fit within the same
allocation size — the four-word layout described above.

Memory Management. We assume the computer system provides nothing
more in the way of memory management than primitive operations to dynam-
ically allocate and de-allocate memory. A simple mark-and-sweep garbage col-
lector manages allocated memory. Memory pools are used to improve the ef-
ficiency of memory allocations. The basic pool implementation is provided by
the Boost.Pool library [5]. In this implementation, each pool contains zero or
more blocks that provide storage for many objects, and has a single variable
representing the head of a free list. Allocation from one of these pools usually
requires little work. On x86 64 machines, in the common case where the pool is
not exhausted, it requires two instructions (a test and a branch) to check the
head of the free list, one instruction to copy the current head (the allocated node
address), and one more instruction to advance the head of the free list. When the
pool is exhausted, a new block is allocated, roughly doubling the total allocation
size.

3.3 Rewriting

A rewrite step of an expression e is computed by dispatching a virtual function,
called step, on the root node of e. For each defined operation symbol, f , function
step is generated by a traversal of the definitional tree of f [1, 2] roughly as
described in [4, Fig. 1]. For every data constructor, function step performs no
operation.

The execution of function step for an expression e rooted by an operation
symbol either finds a step of e or it aborts the computation if no step is found
(and consequently e has no value). Function step performs pattern matching and
determines whether expression e is a redex. If it is, it computes its replacement
and rewrites e. If it is not, it recursively invokes step for the root of some subex-
pression of e. In any case, the step computed by step is needed [13] to obtain the
value of e. Hence, the evaluation strategy is theoretically as efficient as it could
be.
1 Where it is convenient to do so, we will speak in terms of the dynamic type of a
node and its virtual methods. By analogy with the most common implementations of
C++, this type is determined entirely by the contents of the vptr, and virtual method
invocations are type-dependent calls dispatched through the vptr. It is assumed the
reader is familiar with the terminology. Although this mechanism strictly does not
exist in a generic computer system, it can easily be emulated, and the analogy
usefully simplifies our description of rewriting.

4



3.4 Performance Optimizations

Our approach is compatible with and benefits from both generic and specific
optimizations. Generic optimizations include, e.g., deforestation [16] and tail
calls [15]. These are independent of our approach and we are mostly ignoring
them in our benchmarks. We replace a tail recursive call with a jump only in
one function of tree insert.

The specific optimizations originate from the underlying theory of our ap-
proach. The target code reduces only needed redexes, i.e., redexes of an expres-
sion e that must be reduced in every derivation of e to a value. Furthermore,
these redexes not only must be reduced, but also must be derived to constructor-
rooted expressions. The target code takes advantage of this condition to re-use
from some step to the next one some comparisons for pattern matching, and to
avoid the creation of some operation-rooted expressions that would immediately
be taken apart and discarded as garbage.

Furthermore, for some types such as the integers, a constructor-rooted expres-
sions is a literal value. When an integer expression is needed, it can be evaluated
in an eager-like fashion and passed from producers to consumers unboxed. These
conditions explain the superior performance of our approach in benchmarks such
as rfib and tak.

3.5 Machine Register Usage

Sprite reserves four general-purpose machine registers for its own exclusive use.
Since a target program necessarily devotes a large fraction of its issued instruc-
tions to pattern matching and rewriting, a few frequently-referenced variables
related to those tasks, such as the address of the current redex and head of the
free list used to allocate node storage, are stored in the dedicated registers. This
technique improves performance by eliminating any address computations for
those variables, and also work related to passing them from one function to the
next, or moving their values between the processor and memory. Our measure-
ments suggest the cost — that fewer general-purpose registers are available to
the program — is easily outweighed by these benefits.

3.6 Program Encoding

Source programs are encoded in C++ with the help of a macro language. Data
constructors are specified as their label and arity, data types as an ordered se-
quence of constructors. Defined operations are expressed with a recursive struc-
ture that closely matches the structure of a definitional tree. Ignoring the opti-
mizations specifically mentioned in Sect. 3.4, the source program has an unam-
biguous2 translation into the macro language. Though currenly done by hand,
the encoding process is highly mechanical and, therefore, does not permit one to

2 Aside from name-mangling and name-spacing conventions, of which there are many
suitable approaches.

5



commit abuses to gain performance. The manual approach limits us to a small
number of simple programs, but is adequate for rapidly exploring the implemen-
tation space.

4 Conclusions

We have described the design of a target implementation for functional pro-
grams. We have presented details about a prototype implementation of this
design, called Sprite, that efficiently performs functional computations. The pre-
liminary performance results suggest Sprite may in some cases achieve higher
performance than ghc. Inferring definitive conclusions from a benchmark of five
programs would be hazardous at best. Furthermore, our benchmark is biased
toward programs that execute only a small number of simple functions.

In our benchmark, it is desirable to compare the execution of the same source
program by ghc and Sprite. Ghc might optimize a program by some source-
to-source transformations. Sprite can accommodate and benefit from the same
transformations, but since we do not know whether ghc optimizes a program in
such a way, we prefer small, simple programs in which these transformations are
less likely to occur and/or can be more easily predicted.

Also, we compile our programs largely by hand. This compilation is tedious,
error-prone, and does not inspire confidence. Small, simple programs are easier
to compile in this way and are less likely to contain plausible optimizations that
a compiler may not be able to infer. We have been careful and conservative, but
without an actual compiler our conclusions must be considered preliminary. The
implementation of such a compiler is our next goal.

References

1. S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors, Proceedings of
the Third International Conference on Algebraic and Logic Programming, pages
143–157, Volterra, Italy, September 1992. Springer LNCS 632.

2. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

3. S. Antoy. On the correctness of pull-tabbing. TPLP, 11(4-5):713–730, 2011.
4. S. Antoy and A. Peters. Compiling a functional logic language: The basic scheme.

In Proceedings of the Eleventh International Symposium on Functional and Logic
Programming, pages 17–31, Kobe, Japan, May 2012. Springer LNCS 7294.

5. Boost C++ Libraries, 2013. Available at http://www.boost.org/.
6. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from

Curry to Haskell. In Proceedings of the 20th International Workshop on Functional
and (Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS
6816, 2011.

7. R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm Declarative Language
(version 2.3.1), 2007. Available at http://toy.sourceforge.net.

8. R. Echahed and J. C. Janodet. Admissible graph rewriting and narrowing. In
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pages 325 – 340, Manchester, June 1998. MIT Press.

6



9. The Glasgow Haskell Compiler, 2013. Available at http://www.haskell.org/ghc/.
10. M. Hanus. KiCS2 benchmarks. Available at http://www-ps.informatik.uni-kiel.

de/kics2/benchmarks/, 2011.
11. M. Hanus, editor. Curry: An Integrated Functional Logic Language (Vers. 0.8.3),

2012. Available at http://www-ps.informatik.uni-kiel.de/currywiki/.
12. M. Hanus, editor. PAKCS 1.11.2: The Portland Aachen Kiel Curry System, 2013.

Available at http://www.informatik.uni-kiel.de/∼pakcs.
13. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In

J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

14. W. Partain. The NoFib benchmark suite of Haskell programs. In Proceedings of
the 1992 Glasgow Workshop on Functional Programming, pages 195–202, London,
UK, 1993. Springer-Verlag.

15. G. Steele, Jr. Debunking the “expensive procedure call” myth or, procedure call
implementations considered harmful or, lambda: The ultimate goto. In Proceedings
of the 1977 ACM annual conference, pages 153–162, New York, NY, USA, 1977.

16. P. Wadler. Deforestation: Transforming programs to eliminate trees. Theor. Com-
put. Sci., 73(2):231–248, 1990.

7


