
Developing a Usability Oriented ACL2 Test
Suite

Ryan Ralston1

University of Oklahoma, Norman OK 73019, USA,
rlralston@gmail.com

Abstract. Much of the work in advancing the adoption of automated
theorem provers (ATP) in software development is in making ATPs more
accessible to larger groups of users. Accessibility has been enhanced with
new development environments, adding features to manage the complex-
ity, and teaching the use of the tools at the undergraduate level. This
research investigates the ACL2 system and workshop libraries, which
contain over 60,000 theorems, to demonstrate how usability changes over
time, as hardware and software improve. The goal is to estimate usability
by measuring ATP characteristics that are likely to affect usage behav-
iors. In particular, this work focuses on elapsed time in completing proofs
of theorems.

Keywords: software verification, automated theorem proving, usability

1 Motivation

Automated theorem provers (ATP) are potentially viable tools for applying for-
mal methods to verifying executable software. Some of the most common ATPs
implement their logic into functional languages but work has been done to model
object oriented code in ATP logics to verify properties. Jinja is a Java-like system
that implements a compiler and virtual machine with formal semantics that are
type safe. The proof is machine-checked in Isabella/HOL [1]. In similar work,
Spec# is a compiler and runtime for a superset of C# that includes syntax
for specifying properties of methods. The Spec# system creates runtime condi-
tions from the specifications and proves correctness with the ATPs Simplify and
Zap [2,3].

ACL2 implements a side-effect free Common Lisp based programming lan-
guage and logic. It has been used to implement a model of the Java virtual
machine [4, 5]. The M5 model created in this work also demonstrates how a
powerful ATP can still be difficult to use in a industrial setting. One of the lem-
mas introduced in M5 is annotated in the source code with a note that it takes
over 500 seconds for ACL2 to complete its proof. It is unlikely non-experts1 will
have the confidence and patience to succeed in verifying software properties that
require such long computations. Fortunately, ACL2 version 6.0 can prove that

1 The M5 model and lemma were created by one of the developers of ACL2.



lemma on the system described in Section 2 in 90 seconds. Improvements of this
magnitude have an impact on ATP usability.

The existing work shows the feasibility in verifying properties of industrial
software, including software written in imperative languages, by converting to a
functional model and applying an existing ATP. That step, alone, is daunting,
but the results also show the tremendous amount of expertise needed to use
the ATP once converted. This paper describes early research creating a biased
theorem test suite that can be used to judge improvements in usability.

1.1 Related Work

The package ”Thousands of Problems for Theorem Provers” (TPTP) is a test set
of theorems that can be used to measure performance during the development
of ATPs. The theorems are intended to be solved with specified, minimal sets of
axioms [6]. The TPTP library is used to compare ATPs in the CASC competition
[7]. The research reported in this paper seeks metrics that demonstrate a user’s
ability to configure the ATP to prove meaningful properties of software.

ATP have been integrated into existing development environments. The lan-
guage features added in Spec# let users express properties for an underlying
ATP to verify [3]. Translating specifications to a C#-like syntax should make
new users more comfortable using an ATP, but limits expressibility that would
be valuable with experience. A DrScheme extension, Dracula, embedded ACL2
into the development environment to be used in undergraduate computer sci-
ence courses [8]. One of the instructor findings in a first year course was ”the
difficulty of generating proofs in ACL2 does not always scale down with the
complexity of the problem” [8]. This is indicative of the learning curve necessary
to gain value in using ATPs in software development. The ACL2 Sedan inte-
grates ACL2 into Eclipse [9]. The Sedan simplifies the learning curve by being
an Eclipse plug-in while leaving the expressibility unchanged. Additionally, a
3D visualization of ACL2 proof trees has been created to replace the default
text representations [10]. So far, case studies do not indicate it being useful to
non-expert users, but it remains a promising idea.

Finally, ACL(p) is an extension of ACL2 that parallelizes the theorem prover.
The author is motivated to create an ACL2 that provides feedback on proofs
as quickly as possible. The research categorizes ACL2 theorems into 4 groups.
The first group consists of short proofs that would not see much improvement
and a threshold is 5 seconds is used to create this group. The last group is
theorems with high potential speed-up when running as parallel processes [11].
It is anticipated that most users will experience a variety of answer times between
incredibly short and exceedingly long. One of the goals of the research that is
the basis of this paper is to create a test set that includes both.

2 Data

ACL2 theorems are collected in books. The system is distributed with a set of
common books, which will be referred to as the system books in the rest of this



paper. In addition, the ACL2 community holds workshop events regularly. The
work presented at these events is collected and distributed in the workshop books.
Combined there are over 60,000 theorems in the system and workshop books.

The books generate certification files that summarize the proof results. The
summaries include the number of rules used in a proof, the prover steps counted,
the total time in seconds to prove a theorem, and the prove time in seconds which
ignores time devoted to non-proving tasks such as writing output. In this paper,
ACL2 data is gathered from a system configured avoid generating much output
during a proof. Therefore, the analysis investigates total time because the other
non-proving tasks are harder for users to control. The difference between the
two numbers is generally small anyway.

The ACL2 books are a valuable data set for researching ATP usability. The
theorems in the books contain user artifacts such as the use of hints. Many of
the books are commented with stories explaining intent. The theorems proved
in the system books are a standard set that is considered useful to other users
and workshop books are supplementary material to research interests so it is
assumed the books are non-trivial theorems. The theorems were created over
several years, beginning in 1999.

From the books data, we can investigate user experience based on answer
time and complexity. Using the workshop books, we can also investigate temporal
changes to usability based on the year of the workshop. This research subscribes
to the belief explained by Larry Wos in research problem #23 that reducing the
answer time increases the usability of an ATP [12]. Schumann explained that
most ATPs implement answer time cutoffs because allowing long-running proofs
reduces usability for an unlikely gain. He writes that most systems set the cutoff
at a few seconds with anything over a minute being rare [13]. ACL2 does not
force a cutoff, but it is our intuition that most users have an internal cutoff when
using the system. Once the cutoff is passed, the user will stop the current task
and try to configure the system differently.

2.1 System Descriptions

The raw data was gathered on 3 machines. One machine is an AMD Phenom
II X6 1090T 3.20 GHz Windows 7 PC with 16.0 GB RAM. Of the machines, it
is the only desktop computer so it will be referenced as the desktop throughout
the paper. The other two machines are laptops. The high performance laptop is
a Dell XPS L511Z laptop with an Intel Core i5 - 2410M 2.3 GHz processor and
6.00 GB of RAM. It is also running Windows 7. The low performance laptop is a
ten-year-old Gateway Pentium 4 2 GHz with 256 MB RAM. It uses Windows XP
Service Pack 2 as an operating system. The low performance laptop is included in
the gathering because many of the original theorems in the books and workshop
were created over 10 years ago.

The books were tested using ACL2 version 6.0 on all machines. The desktop
and high performance laptop use an ACL2 built on 64-bit Clozure Common Lisp
(CCL) 1.9. The low performance laptop uses the 32-bit CCL 1.9. To control for
effects caused by the underlying Common Lisp distribution, an additional set of



Computer Lisp t ≤ 0.5 s 0.5 s < t ≤ 1.0 s 1.0 s < t ≤ 5.0 s t > 5.0 s

Desktop CCL 98.0% 1.3% 1.0% 0.2%

Desktop SBCL 97% 1.4% 1.1% 0.2%

High Performance CCL 97% 1.5% 1.3% 0.2%

Low Performance CCL 93% 2.8% 3.2% 0.8%
Table 1. System Results by Computer

data was gathered on the desktop using ACL2 built with Steel Bank Common
Lisp (SBCL).

2.2 Results

Table 1 breaks the system books results into buckets based on time. The majority
of the results are less than half a second. Even on the low performance computer,
which takes almost 2 hours longer to finish proving the system books, 96% of
the results are less than 1 second. Comparing performance using the entire suite
is made difficult by a significant ceiling effect. With distributions like this, it is
common to calculate a skewness by dividing the difference between the data’s
mean and mode by the standard deviation. A positive skewness indicates the
right tail of the probability density function is longer than the left but the
distribution is concentrated on the left-side. The skewness of the desktop using
CCL is 78.

1999 2000 2002 2003 2004 2006 2007 2009 2011

Theorems 2864 1310 1204 2348 2112 1108 558 644 65

Rule Count µ 16.2 12.6 14.7 15.7 14.4 12.3 21.4 21.8 25.4

Prover Steps µ 37700 20700 28800 23200 20800 5940 25100 60400 2213

Prove Time µ 0.22 0.17 0.18 0.14 0.36 0.04 0.42 0.53 0.13

Prove Time max 49.4 53.3 105 51.1 62.4 6.47 30.6 56.4 3.60
Table 2. Workshop Results by Year

The summary breakdowns of workshop books is shown in Table 2. We had
expected performance to change over years in the workshop books as hardware
and ACL2 improved. Instead, we see very static performance across average
prove time, maximum prove time, and average prover steps counted. But it
should be noticed that in 2007 and 2009, the number of rules counted in the
summary goes up and the number of theorems goes down. The average prove
times are also higher but are still less than half a second and the maximum prove
times does not increase. Conceivably, ACL2 usability is improving and successful
users are able to prove their desired theorems with fewer lemmas.



3 Test Suite

A goal of this research is constructing a test suite that over-emphasizes long-
running theorems. By making improvements to the answer times on long-running
theorems, it is anticipated users can achieve their intended results with fewer
lemmas. The test suite is also intended to represent usability, and part of ACL2
usability is organizing theorems into books and proving those lemmas prior to
their associated theorems. We want the test suite to incorporate lemmas, since
over time we would expect their need reduced, and to include short running
proofs because it is the common use case.

Our test suite was constructed by accepting a Lisp file if it contained a
theorem with a proof that took over a certain threshold time on the desktop
using CCL. The resulting files were pruned for duplicates that exist, such as
workshop books that were promoted to system books. Three thresholds were
tested and the suites generated were compared by size of the suite and reduction
in skewness. The three thresholds were 1, 5, and 10 seconds. The 1 second suite
only reduced the skewness from 78 to 40. The 5 second suite reduced the skewness
to 22 and the 10 seconds reduced it to 19, but had fewer than 1000 theorems.
The 5 second suite was selected because it reduced the skew almost as much as
the 10 second cutoff, and it included 8.7% of the theorems. The total time of the
test suite is 57.6% of the time on the desktop using CCL.

The files in the system test suite and workshop test suite are described in
Table 3 and Table 4 respectively. The rest of this paper is interested in showing
how the test suite can illustrate performance improvements using the highest
performing and lowest performing computers. The workshop test suite has not
successfully been tested on the low performance laptop, so the remaining discus-
sion is only using the system test suite.

The theorem performance in the test set were paired across all systems. The
desktop using CCL outperformed the other systems on almost all theorems so it
was selected as a baseline for analysis. The theorems were sorted by prove time
on the desktop. The difference between the baseline prove time and each of the
corresponding theorems were calculated. In Figure 1, the x-axis is the index in
the sorted theorem list. The y-axis is the difference between the baseline system.
The more time consuming theorems show greater differences between systems.
The high performance laptop and desktop with SBCL both scored similarly.
The difference from the baseline computer being relatively small except for the
longest running theorems. The low performance laptop begins deviating much
earlier. It is not visible in the graph, but the greatest difference is 649 seconds.

The nature of the curve suggests a power law relationship between time
and some measure of complexity. The theorem summaries include prover steps
counted, which is the best available metric for complexity in the data. The paired
theorems were graphed on a loglog curve with prover steps across the x-axis and
time across the y-axis. Figure 2 shows the curves for all systems. Using the graph,
it is plain to see a difference between the low performance laptop and the other
systems.



Book File Theorems

unicode utf8-decode 76

taspi fringes-guards 42

taspi bdd-functions 82

taspi btrees-bdds 13

taspi fringes-taspi 47

system convert-normalized-term-to-pairs 4

rtl drnd 110

rtl fadd 72

rtl lextra 56

rtl lior 55

rtl setbits-proofs 20

ordinals ordinal-isomorphism 46

models find-k! 67

models theorems-a-and-b 34

models tmi-reductions 90

models universal-never-returns 5

misc dijkstra-shortest-path 126

misc reverse-by-separation 23

defexec fpst 63

data-structures memtree 76

countereg-gen splitnat 87

countereg-gen switchnat 21

concurrent-programs inv-persists 122

concurrent-programs stutter2 54

coi eric-meta 100

coi meta 87

coi base 61

coi erase 35

coi finite 112

coi gacc2 63

coi gacc3 172

coi gax 81

coi ram 127

coi ram2 20

coi ram2b 57

coi tr-path-connection 92

coi wrap 80

coi multicons 13

coi pm 117

coi loglist 39

coi super-ihs 416

arithmetic-5 logand-helper 8

arithmetic-5 logand 70

arithmetic-3 mod-expt-fast 7
Table 3. System Books in Test Suite



Book Year File Theorems

embedded 1999 Proof-Of-Correctness-OneCycle 326

ivy 1999 close 26

ivy 1999 prop-subsume 5

ivy 1999 pull-pulls 22

ivy 1999 pull-sound 30

ivy 1999 sk-step-sound 21

ivy 1999 sk-useless 9

ivy 1999 sk-xbuild 50

ivy 1999 solution2 5

mu-calculus 1999 semantics 19

ste 1999 assertion 28

ste 1999 fundamental 9

ste 1999 inference 31

ste 1999 lemma-4 34

ste 1999 run 33

ste 1999 state 36

lusk-mccune 2000 stepproc1 39

lusk-mccune 2000 stepproc2 14

sumners1 2000 cdeq-phase2 36

cowles-flat 2002 flat-ackermann 16

cowles-flat 2002 flat-reverse 14

cowles-gamboa-van-baalen matrix 2003 matrix 527

gamboa-cowles-van-baalen 2003 kalman-proof 78

moore rockwell 2003 memory-taggings 91

ray-matthews-tuttle 2003 concrete-ltl 8

tsong 2003 shim 24

legato 2004 generic-theory-alternative-induction-mult 8

legato 2004 generic-theory-loop-invariant-mult 8

legato 2004 proof-by-generalization-mult 13

ruiz-et-al 2004 q-dag-unification 185

schmaltz-borrione 2004 collect msg book 23

schmaltz-borrione 2004 local trip book 34

schmaltz-borrione 2004 routing local lemmas 64

sumners-ray 2004 records 53

schmaltz 2007 GeNoC 45

schmaltz 2007 doubleY-routing 81

schmaltz 2007 getting rid of mod 10

schmaltz 2007 routing local lemmas 28

hardin 2009 deque-thms 57

pierre-clavel-leveugle 2009 ATM-TMR 33

verbeek-schmaltz 2009 GeNoC-misc 127

verbeek-schmaltz 2009 GeNoC-scheduling 21

verbeek-schmaltz 2009 simple 71

verbeek-schmaltz 2009 XYRouting 49
Table 4. Workshop Books in Test Suite



Fig. 1. Difference in Time from Desktop with CCL

Fig. 2. Prover Steps vs Time loglog Graph

The comparison can be expanded using the power law relationship. The low
performance system has a slope of 0.84 and an intercept of -2.5. The desktop with
CCL has a slope of 0.80 and an intercept of -4.0. Since performance approaches
0 seconds, the intercept will approach -inf. General increases in performance
should reduce the intercept. Improvements that favor increased performance



on simple theorems will increase the slope. Similarly, improvements that favor
increased performance on complex theorems will decrease the slope.

4 Conclusions

It is difficult to learn to use ATPs, in general, and ACL2, specifically. To incor-
porate the advantages of software verification more conveniently in industry, the
tools should be more usable. While efforts are being made to improve education
and tools, none of these efforts are modeling effective user behavior and apply-
ing the results to improving the system. This test set was created based on the
assumption that a system capable of solving complex problems quickly is more
usable. The test set reduces the ceiling effect without ignoring that complex
proofs are generally proved after proving simpler lemmas. It was demonstrated
that time and prover steps have a power law relationship, which can be used
compare performance differences on a loglog graph.

There is a small difference between the system and workshop books, but not
as significant as expected. The performance over the years in the workshop books
showed results that were more static than expected. There is some evidence in the
results from 2007 and 2009 that less work may be required to prove theorems,
if it is assumed that the results from most workshops stem from comparable
investments of user effort. It may also be that new users adopting the system
over the years has changed the average user behavior submitting books to the
workshops. Upcoming work will search for insight into the change into those last
2 years.

Immediate future work will investigate the effect of specific features in ACL2
on the answer times and complexity of the proofs. A common user will guide the
theorem prover with hints. Many successful users limit the search space for ACL2
by encapsulating lemmas where they are needed or disabling theorems preemp-
tively. The system also has several macros that expand into common theorem
structures that are currently ignored in this analysis. These user configuration
options improve usability for the users that are aware of how to use them. The
books, having been written by skilled users, will use the available options more
efficiently than an average user. If future work identified common, effective con-
figuration options, new and average users could be helped up the ACL2 learning
curve with focused documentation or user tools that recommended the options.

The desktop with CCL outperformed the high performance laptop and the
desktop with SBCL, but there was not a clear difference between the desktop
with SBCL and the laptop. The biggest performance difference between the desk-
top and high performance laptop is the RAM. Based on anecdotal observation,
SBCL uses significantly more memory than CCL. Using the test suite, we could
search for the effect of memory usage on answer times.

The most significant constraint on this research is access to high fidelity user
data. The books lack any information about the time and effort invested by a
user to configure source code to make it possible for ACL2 to accept a theorem.
The books are also created by a skilled set of users so their use of the system is



likely more efficient than most users. A better investigation could be conducted
with data gathered directly from a user’s interaction with ACL2, but data of
this kind is difficult to obtain. One approach could be to implement a data
gathering system with a basic data input protocol. The ACL2 IDEs, such as the
aforementioned ACL2 Sedan and Dracula and the newer Proof Pad [14], could
be modified to let users optionally send updates to the data gathering server as
they work.

All three of these IDEs have been used to teach ACL2 to undergraduate
students. An influx of novice users’ data would balance the majority of the
currently existing data, which reflects use by experts. The novice users would
also provide data that could lead towards understanding the ACL2 learning
curve and how it could be improved.

The goal of this research project is understanding what effects usability and
using that knowledge to improve ATP usability. Successfully admitted, long-
running theorems may be anomalies of ACL2 or anomalies of user behavior.
Either way, the test set represents meaningful theorems that can be proven in
non-trivial user time. Improving the performance on this test set will either
make the theorems less anomalous to ACL2 or increase the number of users that
would find similar theorems. In both cases, the system should be considered
more usable.

References

1. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Transactions on Programming Languages and
Systems 28(4) (2006) 619–695

2. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Proceedings of the 2004 International Conference on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices, Springer (2004)
49–69

3. Barnett, M., yuh Evan Chang, B., Deline, R., Jacobs, B., Leino, K.R.: Boogie:
A modular reusable verifier for object-oriented programs. In: Formal Methods for
Components and Objects: 4th International Symposium. Volume 4111 of Lecture
Notes in Computer Science., Springer (2006) 364–387

4. Moore, J.S.: Proving theorems about Java-like byte code. In Olderog, E.R., Stef-
fen, B., eds.: Correct System Design. Volume 1710 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (1999) 139–162

5. Moore, J.S., Porter, G.: The apprentice challenge. ACM Transactions on Program-
ming Languages and Systems 24(3) (May 2002) 193–216

6. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. Journal of Automated Reasoning 43(4) (2009) 337–362

7. Sutcliffe, G., Suttner, C.: The state of CASC. AI Communications 19(1) (2006)
35–48

8. Eastlund, C., Vaillancourt, D., Felleisen, M.: ACL2 for freshmen: First experiences.
In: Proceedings of the 7th International Workshop on the ACL2 Theorem Prover
and Its Applications. (November 2007)



9. Chamarthi, H.R., Dillinger, P., Manolios, P., Vroon, D.: The ACL2 sedan theorem
proving system. In: Proceedings of the 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Berlin, Heidelberg,
Springer-Verlag (2011) 291–295

10. Bajaj, C., Khandelwal, S., Moore, J., Siddavanahalli, V.: Interactive symbolic vi-
sualization of semi-automatic theorem proving. Technical Report TR-03-37, Uni-
versity of Texas at Austin (August 2003)

11. Rager, D.L.: Parallelizing an Interactive Theorem Prover: Functional Programming
and Proofs with ACL2. PhD thesis, University of Texas at Austin (December 2012)

12. Wos, L.: Automated reasoning - 33 basic research problems. Prentice Hall (1988)
13. Schumann, J.: Automated theorem proving in software engineering. Springer

(2001)
14. Eggensperger, C.: Proof pad: A modern development environment for the ACL2

theorem prover. Master’s thesis, The University of Oklahoma (May 2013)


