
Pure Continuation Marks

Kimball Germane and Jay McCarthy

Brigham Young University, Provo, Utah

Abstract. Continuation marks are a programming language feature
which generalizes stack inspection. Despite its usefulness, this feature
has not been adopted by languages which rely on stack inspection, e.g.,
for dynamic security checks. One reason for this neglect may be that con-
tinuation marks do not yet enjoy a transformation to the plain λ-calculus
which would allow higher-order languages to provide continuation marks
at little cost.
We present a transformation from the call-by-value λ-calculus augmented
with continuation marks to the pure call-by-value λ-calculus. We dis-
cuss how such transformations simplify the construction of compilers
which treat continuation marks correctly. We document how Redex, a
domain-specific language for exploring language semantics, aided the dis-
covery of correct transformations. We offer the sketch proof of a meaning-
preservation theorem. Finally, we apply the transformation to JavaScript.

1 Introduction

Numerous program instruments rely on stack inspection to function. Statistical
profilers sample the stack regularly to record active functions, algebraic step-
pers observe the stack to represent the evaluation context of an expression, and
debuggers naturally require consistent access to the stack. In each of these sce-
narios, the instrument relies on implementation-specific information and must
be maintained as the instrumented language undergoes optimizations and ven-
tures across platforms. This makes these instruments brittle and increases the
porting cost of the language ecosystem. Each would benefit from a generalized
stack-inspection mechanism available within the instrumented language itself. If
written in such an enhanced language, each instrument would be more robust,
more easily modified, and would port for free.

Continuation marks [3] are a programming language feature which generalizes
stack inspection. Not only do they dramatically simplify correct instrumentation
[5], they have been used to allow inspection-based dynamic security checks in
the presence of tail-call optimization [4], to express aspect-oriented programming
in higher-order languages [14], and to implement a form of dynamic binding in
parameters.

Continuation marks originated in PLT Scheme (now Racket [9]). However,
in spite of their usefulness, continuation marks have remained absent from pro-
gramming languages at large. One reason for this is that retrofitting virtual
machines to accommodate the level of stack inspection continuation marks must

provide is expensive, especially when the virtual machines use the host stack for
efficiency.

For example, the ubiquitous JavaScript is an ideal candidate for the addition
of continuation marks. However, as the lingua franca of the web, it has numerous
mature implementations which have been heavily optimized. To add continuation
marks to JavaScript amounts to modifying each implementation upstream, to
say nothing of amending the JavaScript standard. (Clements et al. successfully
added continuation marks in Mozilla’s Rhino compiler [6], but it remains a proof-
of-concept.)

To avoid this roadblock, we instead enhance a core language with facilities to
manipulate continuation marks and desugar the enhanced language back to the
core. To make our desugaring transformation portable to other languages, we
define it over the λ-calculus, the common core of most higher-order languages.
With such a transformation, language semanticists do not need to reconcile the
feature with other features in the language (provided they have already done
so with λ) and their compiler writers do not need to worry about complicating
their implementations (for the same reason).

We begin by further explaining continuation marks in section 2. We then
formalize them via the introduction of a core and enhanced language in section
3. We discuss the necessary properties of a meaningful transformation between
these languages. We present a transformation of continuation marks to the call-
by-value λ-calculus in section 4. This is followed by randomized testing using
a lightweight mechanized model in section 5 and a sketch proof of a meaning-
preservation theorem in section 6. We finally apply it to JavaScript in section
7.

2 Continuation Marks

Continuation marks allow the program to annotate and observe the stack (or con-
tinuation). This is accomplished via two surface-level syntactic forms in the lan-
guage: with-continuation-mark, abbreviated wcm; and current-continuation-
marks, abbreviated ccm.

A wcm expression of the form (wcm mark-expr body-expr) annotates the
youngest portion of the continuation with mark-value, the evaluation of mark-
expr , before evaluating body-expr to body-value. If an annotation, or mark, al-
ready exists on the youngest portion, it is replaced by the new mark. This newly-
added mark is available within body-expr via ccm during its evaluation. Once
complete, the entire wcm expression takes on body-value.

A ccm expression of the form (ccm) traverses the continuation accumulating
a list of annotations ascending in age.

2.1 Example

The traditional, properly-recursive factorial function can be expressed with con-
tinuation marks as follows:

(define (fac n)
(if (zero? n)

(begin
(print (ccm))
1)

(wcm n (∗ n (fac (− n 1))))))

In this definition, a multiplication pends following the recursive call, so the
continuation grows with each.

The effect of evaluating the factorial of 2, expressed as (fac 2), is

> (fac 2)

(1 2)

2

In a tail-call optimized language, a call made in tail position does not enlarge
the continuation. Instead, the portion of the evaluation context dedicated to the
calling function is repurposed for the called function. Continuation marks are
also subject to this optimization; if the continuation is marked in tail position,
the previous mark there is replaced, if it exists.

This behavior is apparent in the tail-recursive definition of the factorial func-
tion, which follows.

(define (fac n acc)
(if (zero? n)

(begin
(print (ccm))
acc)

(wcm n (fac (− n 1) (∗ n acc)))))

In this definition, the multiplication is performed before the recursive call and
an accumulated value is passed. With no pending computation, the evaluation
context devoted to this function is no longer necessary, and is subsumed by the
continuation mark directive.

The effect of evaluating the factorial of 2, here expressed by (fac 2 1), is

> (fac 2 1)

(1)

2

from which the overwriting which occurred is evidenced the singleton list ob-
tained by (ccm).

Using this mechanism, the principal onus of a statistical profiler, algebraic
stepper, or debugger can be met by a straightforward language transformation
which recursively wraps each term in a wcm directive annotating the continua-
tion with a description of the wrapped term.

With this understanding of continuation marks, we can now formalize them
behaviorally.

3 Language Core and Extension

In order to formalize continuation marks, we introduce an extension of the λ-
calculus with facilities to manipulate continuation marks and present its se-
mantics in the style of Felleisen and Hieb [7]. Because our ultimate goal is a
desugaring transform, we first introduce the target language of the transform,
the λ-calculus, in the same way.

3.1 λv

The target language of the transform is Plotkin’s call-by-value λ-calculus, λv
[13], augmented with natural numbers.

Terms e in λv are the familiar terms of the λ-calculus, defined by

e = (e e) | v |x (1)

where
v = (λ (x) e) |n (2)

with n ∈ N.
The evaluation model of λv requires a definition of evaluation contexts. We

define evaluation contexts E by

E = (E e) | (v E) | • (3)

where • denotes a “hole” in the evaluation context, the ultimate destination of
the evaluation of the expression that previously resided there.

The reduction relation of λv is defined simply by

E[((λ (x) e) v)]→ E[e[x← v]] (4)

where e[x← v] denotes a capture-avoiding substitution of every free occurrence
of x in e with v.

3.2 λcm

The source language of the transformation is an extension of λv with facilities
for continuation marks which we term λcm.

Because λcm is an extension of λv, the definition of terms e in λcm

e = (wcm e e) | (ccm) | (e e) | v |x (5)

is identical to that of λv with the addition of two forms for manipulating con-
tinuation marks: wcm, short for with-continuation-mark, which annotates
the continuation with the evaluation of the given mark expression; and ccm,
short for current-continuation-marks, which retrieves the current continua-
tion marks.

The sole novelty of λcm above the plain λv is the ability to annotate and
observe the continuation. Our evaluation model of λcm, given by Pettyjohn et al.
[12], utilizes the current evaluation context for that purpose. Evaluation contexts
E are defined by

E = (wcm v F) |F (6)

F = (E e) | (v E) | (wcmE e) | • (7)

The definition of E is crafted to prevent directly nested wcm directives from
occurring in valid evaluation contexts.

The reduction relation of λcm is defined by

E[((λ (x) e) v)]→ E[e[x← v]] (8)

E[(wcm v (wcm v′ e))]→ E[(wcm v′ e)] (9)

E[(wcm v v′)]→ E[v′] (10)

E[(ccm)]→ E[χ(E)] (11)

As an extension of λv, λcm inherits rule 8 with substitution carried through
wcm terms.

If directly-nested wcm directives are introduced into the evaluation context,
invalidating it (as in the tail-recursive factorial example), rule 9 collapses the
outer into the inner.

Rule 10 defines the value of a wcm expression to take on the value of the
body, once obtained.

The definition of rule 11 is given in terms of a metafunction χ defined by

χ(E) = χ′(E, (λ (x) (λ (y) y))) (12)

where χ′ is defined by

χ′((wcm v F), vs) = χ′(F, (λ (z) ((z v) vs))) (13)

χ′((E e), vs) = χ′(E, vs) (14)

χ′((v E), vs) = χ′(E, vs) (15)

χ′((wcmE e), vs) = χ′(E, vs) (16)

χ′(•, vs) = vs (17)

This definition formalizes the intuition given earlier regarding the behavior of
ccm. Previously, we saw that the value of a ccm directive was a list; however,
lists do not strictly exist as values in the λ-calculus, nor in our extension. In-
stead of adding lists as primitive values to λcm, we employ Church encodings
to represent them natively [2]. To keep things clear, we preserve the intention
of Church-encoded terms by representing them with the useful shorthand of fig.
3.2.

Let →v denote the reduction relation for λv and →∗v its transitive closure.
Similarly, let →cm denote the reduction relation for λcm and →∗cm its transitive
closure. We will use the more specific notation when→ is potentially ambiguous.

With the source and target languages formally specified, we can now examine
a language transformation in earnest.

true = (λ (x) (λ (y)x))

false = (λ (x) (λ (y) y))

cons = (λ (a) (λ (b) (λ (z) ((z a) b))))

snd = (λ (p) (p false))

nil = false

Fig. 1. Church encodings of booleans and lists

4 Transformation

As transformations, desugarings put the meaning of one construct in terms of
another. If the meaning of the former was given only informally, the desugaring
offers a new definition as formal as the definition of the latter. In this way,
desugarings offer a convenient way to provide meaning to a construct and avoid
enlarging the language. If, however, the sugared language already has a formal
meaning, as does λcm, the desugaring must preserve it.

We will define a transformation from λcm to λv and term it C, as in compile,
since we are, in essence, compiling away continuation marks. In order to pre-
serve the meaning of λcm, C must commute with evaluation. More precisely, for
programs p ∈ λcm,

p →∗cm v
↓C ↓C
C[p] →∗v C[v]

should hold. If we define

evalcm(p) =

{
v if p→∗cm v

⊥ if p→∗cm · · ·
(18)

and

evalv(p) =

{
v if p→∗v v
⊥ if p→∗v · · ·

(19)

we can state this more concisely by

C[evalcm(p)] = evalv(C[p]) (20)

4.1 Intuition

The essence of λcm is that programs can apply information to and observe in-
formation about the context in which they are evaluated. Programs in λv have
no such facility. We can simulate this facility by explicitly passing contextual
information to each term as it is evaluated. We can define C to transform wcm
directives to manipulate this information and ccm directives to access it. Intu-
itively, we can transform λcm programs to mark-passing style.

However, marks alone do not account for the tail-call behavior specified by
rule 9. Since tail-call behavior is observable (if indirectly) by λcm programs,
we must also provide to each term information about the position in which it is
evaluated. Specifically, each transformed wcm directive must be notified whether
it is evaluated in tail position of an enclosing wcm directive as it must behave
specially if so. Thus, in addition to passing the current continuation marks, the
transform should pass a flag to each term indicating whether it is evaluated in
tail position of a wcm directive.

These two pieces of information suffice to correctly simulate continuation
marks.

4.2 Concept

The definition of C entails transformation over each syntactic form of λcm.
With this in mind, consider a conceptual transformation of application,

C[(rator-expr rand-expr)], as

(λ (flag)
(λ (marks)

(let ((rator-value ((C[rator-expr] false) marks))
(rand-value ((C[rand-expr] false) marks))

(((rator-value rand-value) flag) marks))))

ignoring for the moment that let is in neither λv or λcm. This definition captures
that

1. before evaluation, we expect flag to indicate tail position information and
marks to provide a list of the current continuation marks,

2. we would like to evaluate C[rator-expr] and C[rand-expr] in the same man-
ner, providing to each its contextual information–specifically that neither is
evaluated in tail position of a wcm directive and the continuation marks for
each are unchanged from the parent context, and

3. following evaluation of operator and operand and application, evaluation of
the resultant term is performed with the original contextual information.

Now consider a conceptual transformation of a wcm directive, C[(wcm mark-
expr body-expr)], as

(λ (flag)
(λ (marks)

((C[body-expr] true) (let ((mark-value ((C[mark-expr] false) marks))
(rest-marks (if flag (snd marks) marks)))

(cons mark-value rest-marks)))))

with similar caveats as the previous case. This definition captures that

1. as in application, we expect flag to indicate tail position information and
marks to provide a list of the current continuation marks,

2. we evaluate mark-expr with correct contextual information,

3. we discard the first continuation mark of the parent context if evaluation is
occurring in tail position of a wcm directive, and

4. we evaluate C[body-expr] with the correct tail-position flag and current con-
tinuation marks.

Finally, consider the conceptual transformation of a ccm directive, C[(ccm)],
as

(λ (flag)
(λ (marks)

marks))

wherein we reap the fruits of simplicity from our laborious passing: this definition
is gratifyingly direct.

The conceptual transformation of variables x and values (λ (x) e) is similar.
Now, to address the absence of let, if, cons, etc. from λv: We can express

the let construct in λv with application. To achieve if and conditionals as well
as list primitives cons, snd, and nil, we use the Church encodings of fig. 1.

4.3 Initiation

In our call-by-value language, abstracting terms has the effect of suspending
evaluation. When an entire program is transformed, all evaluation is suspended,
awaiting arguments representing contextual information. At the top level, the
context is empty, so we pass the contextual information for the empty context:
false, indicating evaluation is not occurring in wcm tail position, and nil, an
empty list of marks.

We can accommodate this by defining a top-level transform Ĉ in terms of C
by

Ĉ[p] = ((C[p] false) nil) (21)

This changes our commutativity property somewhat, since applying Ĉ to a value–
say, the result of evalcm–will instigate further, if benign, reduction. In light of
this, we must alter our statement about commutativity to reflect that we no
longer guarantee term equality, but term equivalence, in the sense that they
share a normal form (or lack of one). We can state this modified property as

Ĉ[evalcm(p)] ≡ evalv(Ĉ[p]) (22)

which, expanded, is

((C[evalcm(p)] false) nil) ≡ evalv(((C[p] false) nil)) (23)

4.4 Some Final Subtleties

We have not added lists as primitive values to λcmbut instead encode lists with
other terms in the language. By not relying on a particular characterization of
lists in the target language, the dependencies of the transformation remain few,

and thus widen its possible application. However, this makes lists themselves
subject to the transformation which complicates their manifestation in the core
language. The effect of this is that the transformation must deal with the list of
continuation marks at the transformed level.

Additionally, after evaluation, values are “truncated” with their leading ab-
stractions applied away. For instance, the transformation of the value (λ (x) x)
to (λ (flag) (λ (marks) (λ (x) (λ (flag) (λ (marks) x))))) will yield, following
evaluation, (λ (x) (λ (flag) (λ (marks) x))). For convenience, we define

C′[(λ (x) e)] = (λ (x) C[e]) (24)

and we adjust Ĉ so that

Ĉ[p] = ((C[p] false) C′[nil]) (25)

4.5 Definition of C

Finally, we present the definition of C over the five syntactic forms of λcm.

Definition 1. C[(rator-expr rand-expr)]
The formal transformation of application follows the let version exactly ex-

cept the definitions of rator-value and rand-value are folded directly in.

(λ (flag)
(λ (marks)

(((((C[rator-expr] false) marks)
((C[rand-expr] false) marks))

flag)
marks)))

Definition 2. C[(wcm mark-expr body-expr)]
The formal transformation of a wcm directive is also extremely similar to the

let version. The Church-encoded conditional eagerly evaluates both branches,
but this still achieves correct behavior, as marks is already a value and (snd
marks) is benign, even if marks is nil.

(λ (flag)
(λ (marks)

((C[body-expr] true)
(((λ (mark-value) (λ (rest-marks) Ĉ[((cons mark-value) rest-marks)]))

((C[mark-expr] false) marks))
((flag Ĉ[(snd marks)]) marks)))))

Definition 3. C[(ccm)]
The let version of the transformation of a ccm directive remains unchanged.

(λ (flag)
(λ (marks)

marks))

Definition 4. C[v]=C[(λ (x) e)]
Like other terms, values are modified to receive contextual information. How-

ever, being unaffected by context, values discard this information.

(λ (flag)
(λ (marks)

(λ (x) C[e])))

Definition 5. C[x]
Variables have the property that, when substitution occurs, they reconstitute

transformed values. That is, in the midst of application in C, terms of the form
(C′[(λ (x) x)] C′[(λ (y) y)]) appear, reducing to C[x][x← C′[(λ (y) y)]] = C[x[x←
(λ (y) y)] = C[(λ (y) y)].

(λ (flag)
(λ (marks)

x))

4.6 Example

To better illustrate what the transformation does, we step through the reduction
of a program which exhibits its more interesting aspects. One λcm program suited
to this purpose is (wcm 0 ((λ (x) (wcm x (ccm))) 1)). It reduces according to
λcm semantics as

(wcm 0 ((λ (x) (wcm x (ccm))) 1))
(wcm 0 (wcm 1 (ccm)))
(wcm 1 (ccm))
(wcm 1 (λ (z) ((z 1) (λ (x) (λ (y) y)))))
(λ (z) ((z 1) (λ (x) (λ (y) y))))

Now consider the reduction of the same program transformed. We apply
the transformation just-in-time as we reduce to prevent term size explosion and
promote clarity and omit uninteresting reductions.

Ĉ[(wcm 0 ((λ (x) (wcm x (ccm))) 1))]

By definition this is

((C[(wcm 0 ((λ (x) (wcm x (ccm))) 1))] false) C′[nil])

which explodes upon expansion to

(((λ (flag)
(λ (marks)

((C[((λ (x) (wcm x (ccm))) 1)] true)
(((λ (mark-value) (λ (rest-marks) C′[((cons mark-value) rest-marks)]))

((C[0] false) marks)) ((flag Ĉ[(snd marks)]) marks)))))
false) C′[nil])

After the application of contextual information, we reach

((C[((λ (x) (wcm x (ccm))) 1)] true)
(((λ (mark-value) (λ (rest-marks) C′[((cons mark-value) rest-marks)]))

((C[0] false) C′[nil])) ((false Ĉ[(snd nil)]) C′[nil])))

the transformation of the wcm body. Terms within are arranged so that cor-
rect evaluation occurs within the native call-by-value regime. This evaluates
mark-expr and and prepends its value to the list of continuation marks before
proceeding with evaluation of body-expr . This reduction soon yields the following
term:

((C[((λ (x) (wcm x (ccm))) 1)] true) C′[((cons 0) nil)])

It is evident that this term will behave exactly as a top-level term except as this
contextual information influences it, and this is exactly the property we have
strived for. Expansion of this term yields

(((λ (flag)
(λ (marks)

(((((C[(λ (x) (wcm x (ccm)))] false) marks)
((C[1] false) marks))

flag)
marks))) true) C′[((cons 0) nil)])

the expansion of an application. In this example, both the operator and operand
are values, so are essentially unaffected by the application of contextual infor-
mation; this application has the effect of preparing the terms for application:

((((λ (x) C[(wcm x (ccm))])
1) true) C′[((cons 0) nil)])

reduces to

((C[(wcm 1 (ccm))]
true) C′[((cons 0) nil)])

This expands and reduces as the wcm term seen previously:

(((λ (flag)
(λ (marks)

((C[(ccm)] true)
(((λ (mark-value) (λ (rest-marks) C′[((cons mark-value) rest-marks)]))

((C[1] false) marks))
((flag Ĉ[(snd marks)]) marks)))))

true) C′[((cons 0) nil)])

Of interest in this process is the effective collapse of the previous mark context
by virtue of the value of flag . When we reach

((λ (marks) marks)
((λ (rest-marks) C′[((cons 1) rest-marks)])
((true Ĉ[(snd ((cons 0) nil))]) C′[((cons 0) nil)])))

the list is beheaded to simulate mark overwriting:

((λ (marks) marks)
((λ (rest-marks) C′[((cons 1) rest-marks)])
Ĉ[(snd ((cons 0) nil))]))

Once given the contextual information, the evaluation of ccm is simple:

((λ (marks) marks)
C′[((cons 1) nil)])

reduces to

C′[((cons 1) nil)]

and we are left with just what we hoped for.

5 Testing

A pragmatic approach to the discovery of a correct transformation involves con-
sistent feedback and testing to validate candidate transforms. Testing is no sub-
stitute for proof, but, as Klein et al. [10] show, proof is no substitute for testing.
Lightweight mechanization is a fruitful middle ground between pencil-and-paper
analysis and fully-mechanized formal proof. We use Redex [8], a domain-specific
language for exploring language semantics, to provide feedback, thoroughly ex-
ercise candidates, and perform exploratory analysis.

The correctness of the transform lies in the property that it commutes with
evaluation. In order to test for this property, we must construct evaluation mod-
els for the source language λcm and the target language λv. Since λcm is an
extension of λv, many of its forms and semantics are inherited. Redex allows
us to exploit this fact by defining a model for λv first and then extending that
model with the enhancements of λcm.

After constructing the models, we are prepared to test various semantic prop-
erties of these two languages. Of course, we are particularly interested in testing
the commutativity of our transformation.

We can test that the property described by equation 22 holds for a given
program p with

(define (meaning-preserved? p)
(alpha-eq? (eval λv (c-hat (eval λcm p))) (eval λv (c-hat p)))

where alpha-eq? determines α-equivalence between two λ-calculus terms and
eval is an alias for the Redex native apply-reduction-relation∗.

Redex provides convenient functions to initiate random testing.

(redex-check λcm e (meaning-preserved? e))

redex-check generates random terms according to the grammar of the given
language (λcm) and term category (e) in search of counterexamples to the pred-
icate. It gradually increases the size of the terms it generates, which we found

useful in obtaining minimal test cases. We subjected the transformation to ran-
dom testing. We used the specific counterexamples to guide modifications to
the transform until it withstood 10,000 random tests. Interestingly, no incorrect
transformation withstood more than 500 random tests before failing.

6 Proof

With a reasonable intuition and definitions hardened by random testing, we
lightly stetch a proof of the correctness of C.

We begin by expressing the commutativity property we have sought to pre-
serve as a theorem:

Theorem 1. For all programs p ∈ λcm, Ĉ[evalcm(p)] = evalv(Ĉ[p]).

We prove this by overloading C to accommodate first evaluation contexts and
then context-term pairs (where E[e] represents (E, e)) by

Definition 6. C[E [e]]

C[E][((C[e] ξ(E)) C′[χ(E)])]

which allows us to formally relate E[e] and C[E[e]].
We then prove a lemma

Lemma 1 (Simulation). For all contexts E ∈ λcm and expressions e ∈ λcm,
E[e]→cm E′[e′] =⇒ C[E[e]]→∗v C[E′[e′]]

by induction over contexts E and terms e. This lemma justifies the evolution of
the evaluation context and each rule in the reduction relation except rule 8. We
preserve this rule with

Lemma 2 (Substitution). For all e, x, v ∈ λcm, C[e[x← v]] = C[e][x← C′[v]].

With these lemmas, the theorem follows quickly.

7 Back to JavaScript

With a correct transformation of continuation marks defined over the λ-calculus,
little effort is required to add continuation marks to an eager, higher-order lan-
guage such as JavaScript.

We add two keywords to manipulate continuation marks: the familiar wcm

and ccm. We chose block syntax for wcm to convey that it is a special form, like
a conditional, instead of a function-like interface. A lone ccm evaluates to the
current continuation marks.

Tail-call elimination is not part of the JavaScript specification which compli-
cates the treatment of the tail-call behavior. We simulate proper tail-call behav-
ior by using the flag to encode whether a function call is in tail position.

A properly-recursive factorial can be implemented in this JavaScript exten-
sion as

var fac = function(n) {

if(n == 0) {

console.log(ccm);

return 1;

}

else {

return wcm { n }

{ n * fac(n - 1) };

}

}

A direct-style transformation of this function desugars these constructs into
vanilla JavaScript, leveraging native arrays for lists of continuation marks.

var fac = function(flag , marks) {

return function(n) {

if(n == 0) {

console.log((function(flag , marks) { return marks; })(false , marks));

return 1;

}

else {

return (function(flag , marks) {

return (function(mark_value , rest_marks) {

return n * fac(false , [mark_value]. concat(rest_marks))(n - 1);

})(n, flag ? marks.slice(1) : marks);

})(flag , marks);

}

}

}

As expected, the output of a manual initiation of this function is

> fac(false , [])(5)

[1, 2, 3, 4, 5]

120

A tail-recursive factorial is expressible in this extension as

var fac = function(n, acc) {

if(n == 0) {

console.log(ccm);

return acc;

}

else {

return wcm { n }

{ fac(n - 1, n * acc) };

}

}

and transforms to

var fac = function(flag , marks) {

return function(n, acc) {

if(n == 0) {

console.log((function(flag , marks) { return marks; })(false , marks));

return acc;

}

else {

return (function(flag , marks) {

return (function(mark_value , rest_marks) {

return fac(true , [mark_value]. concat(rest_marks))(n - 1, n * acc);

})(n, flag ? marks.slice(1) : marks);

})(flag , marks);

}

}

}

The output of a manual initiation of this function is

> fac(false , [])(5, 1)

[1]

120

In this example, the API to compute factorials has changed, but the change
is localized. With top-level control of a program, we can transform the relevant
part of the system, leaving the rest the same. This preserves interoperability
with foreign functions, i.e., third-party JavaScript libraries.

8 Related Work

Monads, introduced by Moggi [11], are another way to model semantics. Their
appeal is significant: they allow one to implement a particular model of compu-
tation with a pure computational logic, such as the λ-calculus.

Expressing continuation marks in a monadic way is simple enough. In Haskell,

data CM m a = CM ((Bool ,[m]) -> a)

instance Monad (CM m) where

return x = CM (_ -> x)

(CM m) >>= f = CM (\(flag ,vs) ->

let (CM m’) = f (m (False ,vs)) in m’ (flag ,vs))

wcm :: m -> CM m a -> CM m a

wcm v (CM m) = CM (\(f,vs) -> m (True , v:(if f then (tail vs) else vs)))

ccm :: CM m [m]

ccm = CM (\(_,vs) -> vs)

runCM :: CM m a -> a

runCM (CM m) = m (False ,[])

is one way, using our approach. The factorial functions leveraging this implemen-
tation exhibit the correct continuation mark behavior but this is not a monad.

Specifically, the right identity law, m >>= return = m, does not hold since CM

conceptually adds a stack frame in bind (>>=). Ager et al. [1] implemented a
similar stack-inspection monad in terms of a lifted state monad, but resorted to
manual management of the stack frames.

9 Conclusion and Future Work

Continuation marks support a bevy of instrumentation tools and advanced lan-
guage features in a generalized, portable way. Despite their demonstrated utility,
they have not yet found their way into most languages. A verified characteriza-
tion of continuation marks in a pure computational language provides implemen-
tors of higher-order languages a correct compiler for continuation marks which
we have demonstrated for JavaScript.

References

1. M.S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspondence
between evaluators and abstract machines. In Principles and practice of declarative
programming, 2003.

2. H.P. Barendregt. The lambda calculus: Its syntax and semantics. 1984.
3. J. Clements. Portable and high-level access to the stack with Continuation Marks.

PhD thesis, Northeastern University, 2006.
4. J. Clements and M. Felleisen. A tail-recursive machine with stack inspection.

Transactions on Programming Languages and Systems, 2004.
5. J. Clements, M. Flatt, and M. Felleisen. Modeling an algebraic stepper. Program-

ming Languages and Systems, 2001.
6. J. Clements, A. Sundaram, and D. Herman. Implementing continuation marks in

javascript. Computer Science and Software Engineering, 2008.
7. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential

control and state. Theoretical computer science, 1992.
8. R.B. Findler and C. Klein. Redex: Practical semantics engineering. 2010.
9. Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1,

PLT Inc., 2010. http://racket-lang.org/tr1/.
10. C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J.A.

McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R.B. Findler. Run your research:
on the effectiveness of lightweight mechanization. In Principles of programming
languages, 2012.

11. E. Moggi. Computational lambda-calculus and monads. In Logic in Computer
Science, 1989.

12. G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamurthi, and M. Felleisen. Con-
tinuations from generalized stack inspection. In ACM SIGPLAN Notices, 2005.

13. G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical computer
science, 1975.

14. D.B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order languages.
In Aspect-oriented software development, 2003.

