
Total Functional Software Engineering

Overview Paper (Extended Abstract)

Baltasar Trancón Widemann

Programming Languages and Compilers
Ilmenau University of Technology
baltasar.trancon@tu-ilmenau.de

Abstract. Methods for mathematically basic and precise description
of system behavior at discrete interfaces have been developed by David
Parnas and his groups and collaborators over many years. Total func-
tions can play a crucial role as constructive and effectively executable
semantics for various levels of these descriptions. Straightforward anal-
ysis and transformation techniques for functional programs, particulary
effective for total functions, can be used as significant steps towards auto-
mated generation of implementations. Theoretical claims are supported
by practical examples. The focus is on insight into applications from the
functional perspective rather than on innovations in functional program-
ming itself.

1 Introduction

The software engineer David Parnas has been influential, besides many other
areas, in the development of a particular, mathematically sound methodology
for the description and specification of system behavior. The general style of the
work of his groups in the Software Quality Research Laboratories at McMaster
University, Ontario and the University of Limerick, and many collaborators, can
be summarized in the following two maxims:

1. The essential complexity of real-world systems must be acknowledged, and
met with appropriately scalable methods, but

2. the mathematics underlying these methods must be as simple and rigorous
as possible.

In recent years, it has emerged that many of the proposed methods can be
understood in a framework of total functional programming. This paradigm shift,
away from the original presentation in elementary set theory, implies multiple
illuminating changes in perspective:

1. Algebraic structure is uncovered. Method design choices that have been based
on practical experience and justified pragmatically by mathematical fitness
and economy, can be strengthened theoretically by being mapped to natural
algebraic constructs.

2. Executability is emphasized. In contrast to descriptive set-theoretic mod-
els where effective evaluation procedures are implicit meta-information, the
functional programming view puts denotational and operational semantics
on equal footing.

3. Tools are leveraged. Beyond executability in principle, actual implementa-
tions are needed at the end of the day, to serve as test oracles, simulators
or prototypes. In the traditional set-theoretic approach, there is a choice be-
tween confinement to some theorem prover sandbox, and naive translation
to a general-purpose programming language, with all the associated pitfalls.
The tried and proven tools of functional programming language implementa-
tion support symbolic evaluation and code generation in a way that is both
reliable and flexible.

The current state of the art is such that the theoretical basis is established
fairly comprehensively. By contrast, the practical side of real tools is basically
nonexistent, apart from academic prototypes with limited scope and service life-
time. The purpose of the present paper is to serve as a conceptual reference for
future implementations.

The following three sections each discuss one particular method that builds
on the preceding. Note that the focus here is on the application of functional
technologies outside their principal programming domain. Most of the material
discussed in the following is of little novelty from the functional programming
perspective proper, but summarizes, condenses, and in places even improves the
understanding of the subject matters with respect to their traditional presenta-
tion.

2 Predicate Logic

The Parnas approach to algebraical–logical language [22] differs from most other
software engineering methodologies by treating algebraic (value-level) expres-
sions as partial, but logic (truth-level) expressions as total.

2.1 Two Worlds

The algebraic world is one of strict partial functions: An expression of the form
f(e1, . . . , en) is defined if and only if all subexpressions ei are defined, and the
tuple (v1, . . . , vn) of their respective values is in the domain of f . Denotationally,
every value type has a bottom element. By contrast, the logic world is one of total
predicates: An expression of the form p(e1, . . . , en) is true if all subexpressions
ei are defined, and the tuple (v1, . . . , vn) of their respective values is in the
extension of p, and false otherwise. That is, the type of truth values has no
bottom element. Case distinction operators have condition arguments of truth
value type, reflexively embedding the logic world in the algebraic world.

This account of partiality is in line with the IEEE 754 standard for floating-
point arithmetics, where comparison operators on numbers totalize in the same

way with respect to the bottom value NaN. It is, however, distinct from the Z
[8] approach, where logic is three-valued with an undetermined bottom element,
predicates are strict, but logical connectives are non-strict in both arguments.
For example, in the expression 0/0 = 1∨ 1 = 1, the first clause is false according
to [22], but undetermined according to Z, whereas the whole epression is true in
either case, albeit for different reasons.

The special role of the bottom element has profound implications on eval-
uation strategies, which can be seen clearly from basic considerations of deno-
tational semantics of functional programs: A definedness predicate can be for-
malized within the language, simply as “defined e = t” which entails that each
evaluation strategy must

– either have a solvable halting problem,
– or wrongly assign the value bottom rather than zero to some instances of

the expression scheme

if then else(defined e, 1, 0)

2.2 Enter Total Functions

An elegant solution of this dilemma is to restrict the expression language such
that it can be interpreted in a strongly normalizing calculus, thus reducing the
halting problem to triviality.

Such calculi define total rather than partial functions; the partiality of alge-
braic expressions is emulated adequately by the monad M = (−) + 1, known as
Maybe in Haskell. It comes with the natural transformations ηX : X → M(X)
(unit, return in Haskell) and µX : M2(X) → M(X) (multiplication), as well
as the family of constants ⊥X ∈ M(X). Partial functions of type A 9 B are
encoded as A→M(B). Values of type A are encoded as M(A). Strict, checked
application is given by the operator

e : M(A) f : A→M(B)

e . f : M(B)
e . f = µB

(
M(f)(e)

)
known as bind in Haskell.

An emulation of the intended partial language can then be given by induction
over the syntactic structure:

– Constants and variables are taken to be always defined.

c : A

c† : M(A)
c† = ηA(c)

– The pseudo-constant ? denotes an atomic undefined expression.

?A : A

?†A : M(A)
?†A = ⊥A

– Tupling (only binary shown for simplicity) is strict.

(a1, a2) : A1 ×An

(a1, a2)† : M(A1 ×A2)
(a1, a2)† = a†1 .

(
λx1. a

†
2 .
(
λx2. ηA1×A2(x1, x2)

))
– References to partial functions are Kleisli-extended.

f : A9 B

f† : M(A)→M(B)
f† = . f

– References to predicates are totalized sending bottom to false.

p : A→ B
p† : M(A)→ B

p† = [p, const f]

– Emulation distributes over application.(
s(e1, . . . , en)

)†
= s†

(
(e1, . . . , en)†

)
It is easy to see that this emulation preserves well-typing, and extends to

function and predicate definitions.

2.3 Simplification

The administrative operations inserted by the emulation complicate the struc-
ture of expressions considerably at first sight. But fortunately, a substantial part
can be eliminated by straightforward partial evaluation and simplifications using
the monad laws. In particular we have:

f†
(
η(x)

)
= η(x) . f = f(x) p†

(
η(x)

)
= [p, const f]

(
η(x)

)
= p(x)

Note that such program transformations are rather easier, and can be applied
more aggressively, in a strongly normalizing setting.

For instance, consider a definition of partial function composition:

compose(g, f)(x) = (g(f(x)))† = g†(f†(x†))

= η(x) . f . g

= f(x) . g

Here the inner application is reduced to unchecked form because x is necessarily
defined, seeing that applications to undefined arguments are handled at the call
site. The outer application needs to remain checked for spontaneous undefined-
ness of the subexpression f(x).

If additionally f is total by construction, that is f = η◦f ′ (not an uncommon
case, see for example the definition of partial tupling), then we can reduce this
further and eliminate another check:

compose(g, η ◦ f ′)(x) = η
(
f ′(x)

)
. g

= g
(
f ′(x)

)

In summary, a reflexive combination of partial algebraical and total logical
language can be represented faithfully in a calculus of total functions, by us-
ing a well-known monadic lifting. Locally total subexpressions are reduced to
their natural form by straightforward simplification of the resulting monadic ex-
pressions. This is of course a fairly banal insight in a functional programming
context. But it is nowhere nearly as automatic and self-evident in contexts of
set-theoretic proof systems or ad-hoc code generators, the standard tools of sys-
tem engineers, where partiality is an implicit side condition rather than integral
part of data flow.

2.4 Discussion: Expressive Power

Of course the proposed framework, based on a calculus of total functions, has a
significant limitation: The language that can be interpreted in it has to be quite
restricted, compared with the full power of first-order predicate logic that would
be available (albeit incompletely operationalized) in a theorem prover environ-
ment. Expressing an arbitrary nontrivial algorithm in terms of constructively
total functions is known to be a difficult task.

Fortunately, the existing method base definitions and the examples suggest
that very simple data structures and algorithms go a long way. Simple alge-
braic datatypes and primitive recursive access functions, whose representation in
strongly normalizing calculi is well-understood, make up most of the framework.
By contrast, particularly troublesome features, notably infinite set comprehen-
sions and general recursive function definitions, are apparently not required.

This finding suggests an interesting, open philosophical question: is the com-
putational simplicity just a happy coincidence, or are mathematically more in-
volved constucts pragmatically ill-suited to the task of behavioral description of
systems, simply because they are harder to understand for the human engineer?

3 Tabular Expressions

Classical mathematics are heavily biased in terms of algebraically simple func-
tions which have a homogenous representation as a simple expression with one
or more variables over their whole domain. Mildly heterogeneous definitions such
as piecewise definitions for a domain partitioned into intervals are admissible,
but more general case distinctions are generally avoided. By contrast, the theory
of computation in computer science is discrete by nature, and case distinctions
feature pervasively and nestedly in function definitions.

Where case distinctions are made in logically rigorous descriptive formalisms,
it is important to ascertain that cases are non-contradictory and complete. Func-
tional programming provides a notation for case distinction that is powerful,
theoretically elegant and easy to implement, namely by pattern matching on
algebraic datatypes. Unfortunately this approach has little acceptance in system
engineering contexts. Engineers traditionally favour a different form, namely
tabular expressions, where alternative cases are laid out spatially as columns or
rows of a table. The tabular notation has attractive pragmatic advantages [20]:

1. It scales from simple two- and three-way distinctions to extremely complex
expressions where many-way and/or hierachical case distinctions along mul-
tiple, more or less orthogonal criteria are combined.

2. It is fairly easy and intuitive to read for domain experts without formal
training in symbolic programming, and can be used, edited and archived
effectively in paper form.

3. It supports manual and machine-supported inspection, validation and ver-
ification of descriptions by systematic coverage of rows, columns or cells;
applications include soundness and completeness proofs as well as compli-
ance checks and test suite design [4–6].

3.1 Simple Example

Fig. 1 shows a simple real-world tabular expression. It appeared in inspection
documents of the Darlington Nuclear Power Generation Station [14, 15]. In the
shutdown system, parts of the monitoring logic only apply near maximum power.
The pertaining sensors are “conditioned in” (activated) above a certain power
level and “conditioned out” (deactivated) below. To avoid a jitter effect (high-
frequency switching events), the respective threshold levels Kin and Kout are
set to slightly different values, thus introducing artificial hysteresis. Between the
two, the previous value is maintained. See the top half of Fig. 1 for an illustration
of the behavior, and the bottom half for the tabular description as a function of
the theshold parameters, the current power level and the previous value.

The function definition is organized as a one-dimensional decision table. The
top (header) (1 × 3)-grid of truth-level expressions specifies a three-way case
distinction. The bottom (main) (1 × 3)-grid of value-level expressions contains
the respective function results. Note that values are Boolean by accident, but the
main grid is three-valued (true, false,⊥) whereas the header grid is two-valued.

The function is simple in structure and does not appear to merit the tabular
form at first sight. But closer inspection reveals a subtlety that illustrates why
symmetric case distinctions, as expressed by a header grid, are sometimes supe-
rior to if-then-else cascades or first-fit pattern matching: The cases in the upper
grid are only consistent and complete under the implicit constraint Kout < Kin .
Hence a thorough inspection of the table, either by a human expert or by a
theorem prover (such as PVS, which found the error in actual fact [14]), will
reveal that the description is formally deficient. By contrast, a cascading defini-
tion where each case implies the negation of the preceding, would just silently
go wrong.

3.2 Complex Example

Fig. 2 shows a complex tabular expression. It specifies a test procedure for com-
puter keyboards [27]. The general idea is fairly simple: all keys are to be pressed
in order, and if all registered keycodes correspond to the expected sequence, the
keyboard passes the test. This homogeneous principle is then complicated by

t

Power

PwrCnd

Kout

Kin

PwrCnd(Prev : bool ; Power ,Kin ,Kout : real) : bool ≡

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

false Prev true

Fig. 1. Simple tabular expression: power conditioning for sensors

N(T) ≡
T =

T 6=
N
(
p(T)

)
= 1 1 < N

(
p(T)

)
< L N

(
p(T)

)
= L

keyOK (T) N
(
p(T)

)
+ 1 Pass

¬keyOK (T)

¬keyEsc(T)

pkeyOK (T)

N
(
p(T)

)
− 1

¬pkeyOK (T)∧
pkeyEsc(T)∧

ppkeyOK (T)

¬pkeyOK (T)∧

N
(
p(T)

)
pkeyEsc(T)∧

¬ppkeyOK (T)

¬pkeyOK (T)∧
1

¬pkeyEsc(T)

keyEsc(T)

¬pkeyEsc(T)

pekeyEsc(T)

pkeyEsc(T)∧
Fail

¬pekeyEsc(T)

where keyOK (T) ≡ r(T) = N
(
p(T)

)
keyEsc(T) ≡ r(T) = Esc

pkeyOK (T) ≡ keyOK
(
p(T)

)
pkeyEsc(T) ≡ keyEsc

(
p(T)

)
ppkeyOK (T) ≡ keyOK

(
p2(T)

)
pekeyEsc(T) ≡ N

(
p2(T)

)
= Esc

Fig. 2. Complex tabular expression: computer keyboard checking procedure

provisions for correcting errors both of the hardware and of the human tester
by pressing the escape key, without exempting the escape key from the test se-
quence. The tabular expression is the result of a formal analysis of several pages
of prose, eliminating several ambiguities, inconsistencies and loopholes.

The function N specifies the number of the next key to be pressed or a
verdict (Pass or Fail), depending on the sequence T of keys pressed so far.
The constant denotes the empty sequence. Nonempty sequences T can be
deconstructed into a most recent event r(T) and a previous sequence p(T).

The tabular form highlights several features that are hard to emulate in
functional programming style or any other textual format:

1. The table is two-dimensional: the chosen variant depends on two more or less
orthogonal case distinctions. They are specified by the top and left header
grids of truth-level expressions, respectively. Together they select a value-
level cell of the bottom-right main grid at the spatial intersection of their
axes. The choice which of these to evaluate first is completely arbitrary.

2. Each header is hierarchical, having a binary decision tree structure ending in
flat two-or-more-way distinctions. The choice of decision criteria and order
of flat distinctions is logically arbitrary, but pragmatically highly relevant
for good readability of the resulting table: Related cases should end up close
together, ideally in adjacent cells of the main grid.

3. Homogeneous regions of cases in the main grid, or “modes” of the system,
are indicated by invisible cell boundaries. Missing expressions indicate un-
satisfiable conditions; those are an artifact of the headers not being fully
independent.

4. Case distinctions make effective use of the treatment of undefined values,
discussed in the previous section, for keeping things simple. For instance, all
auxiliary predicates involve equations whose parts are defined for nonempty
sequences T only; hence the only row that is satisfiable for the column cor-
responding to T being empty is the fifth, where all predicates occur in neg-
ative form. The header expression T 6= is redundant and included only
for greater clarity. More generally, nested distinctions can always be read as
conjunctions and simplified accordingly, which would be difficult in logically
three-valued frameworks, because one clause may govern the definedness of
another.

3.3 Table Combinators

A connection between tabular expressions and functional programming has al-
ready been noted by [13]. There a combinator approach is followed: a collection
of compositional table contruction operators is given, with executable Haskell
implementation for operational semantics, and proof support in the Isabelle sys-
tem for denotational semantics. While both theoretically elegant and techically
effective, the approach suffers from severe limitations regarding the shapes of
tables that can be constructed; a drawback shared with both other practical
tools such as [25] and theoretical formalizations such as [9–11].

Content [I, J,X, Y] = Map[I,Map[J,Expr [X,Y]]]

TType[I, J,X, Y] =

(
wellf : Content [I, J,X, Y]×X → bool ;
eval : Content [I, J,X, Y]×X 9 Y

)
Table[I, J,X, Y] =

(
content : Content [I, J,X, Y];
type : TType[I, J,X, Y]

)

Fig. 3. Table model as functional datatype

3.4 General Table Model

The examples have already shown a weakness, or rather looseness, of the tabular
notation: Considerable amounts of semantic detail are implicit in the graphical
layout or the conventions of users. This is typically adequate for a team of
experts, but not for broader communication, formal verification or automated
evaluation. Support for certain ad-hoc tabular formats has been built into many
engineering tools. These may be pragmatically useful, but there is no theoretical
boundary of what should be included; the examples already show both plain
one- and two-dimensional forms, and several advanced features, such as branch-
ing headers [7, 28], and shared and empty main grid cells. Various generalizations
(for instance extension to n dimensions, grids with circular or otherwise fancy
topology, and specialized case distinctions such as C-style switch) are mathemat-
ically straightforward, but defeat the capabilities of implemented, hard-wired
table models.

A unified theoretical approach [12] defines tabular expressions abstractly as
a formal structure of three components:

1. The content of the table as an indexed set of indexed grids containing cell
expressions. Both grid and cell indices are abstract; no layout geometry is
implied. This is the only component particular to a concrete table.

2. A well-formedness predicate that decides whether the table content conforms
to given shape and consistency constraints. This component is shared among
tabular expressions of a common type.

3. One or more evaluation functions that interpret the cell content, conditional
on its well-formedness, as a function of its argument variables. This compo-
nent is also shared among tabular expressions of a common type.

3.5 Functional Table Model

Fig. 3 shows a datatype definition for table models. Type parameters are I, J
for grid and cell indices, and X,Y for domain and range, respectively.

The function argument may occur in each table cell subexpression. Whereas
first-order tools default to symbolic representations, in higher-order functional
programming the obvious encoding technique is lambda lifting : every cell con-
tains an individual function of the global arguments. The transformation is trivial

because cell contents are independent (neither individually not mutually recur-
sive). Consequently we simply have Expr [X,Y] = (X 9 Y).

The well-formedness predicate may contain both static and dynamic con-
straints. These could be separated by binding time analysis, in order to be
checked as early as possible. For n-dimensional regular function tables, which
subsume the two given examples with n = 2, the types parameters are chosen
such that:

1. The cell indices of each header grid are sets of finite paths closed under
prefixes.

2. The cell indices of the main grid are the Cartesian product of the cell indices
of the header grids.

The well-formedness constraints are:

1. There are n+ 1 grids. The first n grids are headers and contain truth-valued
expressions. The last grid is the main grid and contains Y -valued expressions.

2. In each header, the respective conjunctions of formulas along maximal maths
partition the function domain.

3. For each main index (j1, . . . , jn), if the formulas indexed by ji in the i-th
header, respectively, are jointly satisfiable for all i, there is a corresponding
cell; other main cells may be omitted.

We treat hierarchical header structure as a syntactic abbreviation for simplicity.
The corresponding evaluation function is:

1. For each i-th header grid, find the maximal path ji such that the conjunction
of all formulas in cells along the path is satisfied.

2. Evaluate the main grid cell at (j1, . . . , jn).

The table type effectively defines a semantic checker and interpreter for the
table content. Obviously when both type and content are provided, these algo-
rithms can be simplified drastically by partial evaluation of the pair. Assume
well-formedness is split by binding time analysis into a static and a dynamic
part

swellf : Content [I, J,X, Y]→ bool ;

dwellf : Content [I, J,X, Y]×X → bool

Then we can partially evaluate the table type components applied to the con-
crete content, obtaining the following record of table operations, which hides the
defining content completely:pswellf : bool ;

pdwellf : X → bool ;
peval : X 9 Y

Possibly more static safety is required, such as a guarantee that the “com-

piled” evaluation function peval is defined whenever the dynamic well-formedness

check pdwellf holds. The strong connection between total function calculi and
constructive proof systems, exemplified in tools such as Coq or Agda, could be
used to resolve these issues statically. No practical attempts to perform this
manually or automatically have been documented so far.

4 Trace Function Method

The trace function method is a formalism for black-box description of observable
system or component behavior at an interface. It is intended as a mathematically
simple and direct replacement for algebraic and automata-theoretic approaches,
as well as the earlier trace assertion [2, 19] and trace rewriting [33, 34] methods.

A trace is a sequence of relevant events at some interface, where each event
is a discrete point in time at which interface variables may change their values.
Input and output variables under control of the environment and the system,
respectively, are unified. Valid system behavior is specified by giving, for each
output variable, a trace function or relation, which maps traces to possible output
values for the final event. The set of valid traces is then defined inductively:

– The empty trace is valid.

– A valid trace can be extended by a following event if and only if all output
variables of that event conform to the respective trace functions.

Having the trace, that is the sequence of preceding interface events, instead of
internal state as the causal determinant of future behavior makes this approach
mathematically and epistemologically very abstract and elegant. However, there
are a couple of logical, philosophical and technical issues:

1. Trace functions specify part of an event, namely the value of one output
variable, in terms of a trace ending in that event; how can we avoid circu-
larity?

2. The proposed way to avoid circularity is to include only the input part of
the most recent event in the argument to trace functions; is that a natural
solution, and if so, the only natural one?

3. Trace functions take syntactically well-formed, as opposed to valid, traces as
their arguments (necessarily to avoid meta-circularity); how do counterfac-
tual values in invalid traces affect the specification of behavior?

4. A trace function has two distinct ways of depending recursively on its own
value for trace prefixes, namely by retrieval from events and by recursive
self-application; are they exchangeable, and if not, which one is logically
preferred?

5. Trace functions can depend on variables in past events in many ways: on the
last event only, on a fixed sliding window, on the most recent event matching
a certain pattern, etc.; which complexity classes are there with respect to
implementation as a state system, and can efficient iterative representations
be derived automatically?

All of these can be addressed by rephrasing trace functions, with their pecu-
liar recursive structure, in a recursion scheme for total functions, namely course-
of-values iteration, in category-theoretic presentation [32].

The formal scheme, in a nutshell, is as follows: Consider an endofunctor F
whose initial algebra (µF, inF : FµF → µF) is a datatype of interest. The
simplest total recursion scheme over F is iteration: For every F -algebra (C,ϕ :
FC → C) there is a unique function (|ϕ|) : µF → C such that

(|ϕ|) = ϕ ◦ F (|ϕ|) ◦ in−1F

The canonical example is the functor N = 1 + with the initial algebra
(N, [0, succ]). Every N -algebra (C,ϕ = [z, s]) gives rise to a function (|ϕ|) : N→ C
with (|ϕ|)(n) = sn(z), hence the name iteration for the scheme. Written as an
explicitly self-referential definition, this gives

(|ϕ|)(n) =

{
z n = 0

s
(
(|ϕ|)(n− 1)

)
n > 0

That is, the function may depend recursively on its own value for the immediate
predecessor(s) of the current argument value. The recursive tabular expression
depicted in Fig. 2 is easily seen to be of this form.

The scheme of course-of-value iteration generalizes ordinary iteration to func-
tions that depend on their own value for all transitive predecessors of the current
argument value. Consider the composite functor FC = C×F () and a final FC-
coalgebra (νFC , outFC : νFC → FCνFC) as a (co)datatype. Then for every
map ψ : FνFC → C there is a unique function {|ψ|} : µF → C whose precise
definition and characterizing universal property are out of scope here.

Coming back to the previous example, we find that νNC ∼= C+ ∪ Cω (the
set of non-empty finite and infinite sequences over C) and NνNC ∼= C∗ ∪ Cω.
Then we have specifically

{|ψ|}(n) = ψ
(
〈{|ψ|}(n− 1), . . . {|ψ|}(0)〉

)
(1)

The canonical example is C = N and

ψ(s) =

0 |s| = 0

1 |s| = 1

s0 + s1 |s| > 1

which generates the Fibonacci function {|ψ|}.
Let I,O be the record type of inputs/outputs of an interface, respectively,

and write IO = I ×O. Defining a functor T = N I = I × (1 +) gives µT ∼= I+.
Consequently νTO ∼= IO+∪IOω and TνTO ∼= I×(IO+∪IOω). In words, TνTO

differs from IO∗ ∪ IOω only in the fact that the first O is missing. A map of
the form ψ : TνTO → O maps such a partial trace to the (missing) output, and
hence defines a trace function {|ψ|} with

{|ψ|}(〈i0, . . . , in〉) = ψ
(
i0,
〈(
i1, {|ψ|}(〈i1, . . . , in〉)), . . . , (in, {|ψ|}(〈in〉)

)〉)
(2)

bag(T) ≡

T =
0

r(T).op =

clr

cnt n

inc min(n + 1, B)

dec max (n− 1, 0)

where n ≡ bag
(
p(T) . r(T).arg

)
T . x ≡

T =

r(T).op = clr ∨ r(T).arg = x T

r(T).op 6= clr ∧ r(T).arg 6= x p(T) . x

Fig. 4. Trace function specification of multiset data structure

It can be seen, analogously to equation (1), that values for either infinite and
illegal traces are irrelevant for the result.

The following simple but nontrivial example specifies the behavior of a mu-
table multiset component that can hold elements of some type E. Its interface
supports four operations op ∈ {clr, cnt, inc, dec} which completely remove a given
element arg , count its multiplicity, and add or remove one instance, respectively.
Each operation returns the resulting multiplicity of the given element. Real-
world constraints are added with requirements for robust behavior: No element
may exceed a fixed multiplicity B, and removal of non-existent elements is ig-
nored. These simple but natural constraints break naive attempts at algebraic
specification: the algebraic structure may be correct, but is too complicated and
irregular to be considered adequate.

Fig. 4 depicts a trace function specification of the multiset component. It
is explicitly recursive via the auxiliary term n, but not in ordinary iteration
form: the recursive argument is some predecessor of the current one, determined
dynamically by the auxiliary function T . x which implements the (ordinarily
iterative) search “subtrace up to the most recent event that affects the multi-
plicity of element x”. This definition is easily transformed to a course-of-value
generator map ψ, by replacing recursive calls with retrievals of recorded output
values from the trace.

The functor for the recursion scheme of trace functions can be simplified
from T to N , at the price of complicating the range type from O to OI+∪Iω

,
thus making trace function recursion a higher-order iteration [31]. The functor
N is distinguished because for each of its course-of-value iterations, there is a
whole category of simulating deterministic transition systems with more or less
elaborate state space [30], which form a semantic framework for both prototypic
and production-quality implementations.

The selection of a particular implementation is a trade-off between ease of
derivation and efficiency of execution, and cannot be automated straightfor-

wardly. The initial implementation, which simply accumulates inputs and out-
puts, has unbounded space requirements, and may not be acceptable for any but
the most prototypic uses. But practical hints can be gained from the analysis of
access patterns to recursive predecessors: For instance, if there is a horizon such
that each output depends only on the preceding k, then a ring buffer of size k
is a fairly good state space for canonical implementation. In the Fibonacci ex-
ample, we have k = 2 for the standard imperative implementation. Other, more
dynamic access patterns such as in the multiset example could possibly be clas-
sified according to their complexity and associated implementation techniques.

5 Conclusion

The three levels of Parnas-style mathematical description of system behavior
form a stack of methods, where each layer benefits from a (total) function view-
point in a particular way. Predicate logic with partial value level and total truth
level requires an implementation in terms of total (strongly terminating) func-
tions because of the mutual dependencies between the levels. Tabular expression
scale inhomogeneous function definitions up to very complex case distinctions.
Their generic definition requires datatypes to contain explicit functions for check-
ing and evaluation, and implicit functions for cell expressions with free variables.
The generic parts can be fused with concrete contents to form specific table se-
mantics by means of standard specialization techniques such as bindign time
analysis and partial evaluation. Finally, the trace function method employs tab-
ular expressions with a particular recursion scheme over traces represented as
sequences of hypothetical past events, for the description of component behav-
ior without explicit reference to internal state. The precise form and meaning of
this recursion scheme is given by categorical course-of-value iteration, for which
rough but general implementation guidelines can be given, depending on the
pattern of access to the past.

References

[1] V. Balat and O. Danvy. “Strong Normalization by Type-Directed Partial
Evaluation and Run-Time Code Generation”. In: Proc. WTC ’97. LNCS 1473.
Springer, 1997, pp. 240–252.

[2] W. Bartoussek and D. L. Parnas. “Using Assertions about Traces to Write
Abstract Specifications for Software Modules”. In: Proc. Second Conf.
European Cooperation in Informatics and Information Systems Methodology.
1978, pp. 211–236.

[3] J. Desharnais, R. Khédry, and A. Mili. “Interpretation of tabular expressions
using arrays of relations”. In: Relational methods for computer science
applications. Physica Verlga Rudolf Liebing KG, 2001, pp. 3–13.

[4] X. Feng, D. L. Parnas, and T. H. Tse. “Tabular expression-based testing
strategies: A comparison”. In: Proc. MUTATION ’07. IEEE Computer Society,
2007.

[5] X. Feng, D. L. Parnas, and T. H. Tse. “Fault Propagation in Tabular
Expression-Based Specifications”. In: Proc. COMPSAC ’08. IEEE Computer
Society, 2008, pp. 180–183.

[6] X. Feng et al. “A Comparison of Tabular Expression-Based Testing Strategies”.
In: IEEE Trans. Software Eng. 37.5 (2011), pp. 616–634.

[7] H. Furusawa and W. Kahl. Table algebras: Algebraic structures for tabular
notation, including nested headers. Programming Science Technical Report.
AIST, 2004.

[8] Information Technology – Z Formal Specification Notation – Syntax, Type
System and Semantics. Standard 13568. ISO/IEC. 2002.

[9] R. Janicki. “Towards a formal semantics of Parnas tables”. In: Proc. ICSE ’95.
ACM, 1995, pp. 231–240.

[10] R. Janicki and R. Khédry. “On a formal semantics of tabular expressions”. In:
Sci. Comp. Progr. 39.2-3 (2001), pp. 189–213.

[11] R. Janicki, D. L. Parnas, and J. Zucker. “Tabular representations in relational
documents”. In: Relational methods in computer science. Springer, 1997,
pp. 184–196.

[12] Y. Jin and D. L. Parnas. “Defining the meaning of tabular mathematical
expressions”. In: Sci. Comput. Program. 75.11 (2010), pp. 980–1000.

[13] W. Kahl. Compositional syntax and semantics of tables. SQRL Report 15.
McMaster University, 2003.

[14] M. Lawford, P. Froebel, and G. Moum. “Application of tabular methods to the
specification and verification of a nuclear reactor shutdown system”. In: Formal
Methods in System Design (2001). Accepted for publication 2004.

[15] M. Lawford et al. “Practical Application of Functional and Relational Methods
for the Specification and Verification of Safety Critical Software”. In: Proc.
AMAST ’00. LNCS 1816. Springer, 2000, pp. 73–88.

[16] Z. Liu, D. L. Parnas, and B. Trancón y Widemann. “Documenting and
verifying systems assembled from components”. In: Frontiers of Computer
Science in China 4.2 (2010), pp. 151–161.

[17] V. Pantelic et al. “Inspection of concurrent systems: Combining tables,
theorem proving and model checking”. In: Proc. SERP ’06. 2006, pp. 629–635.

[18] V. Pantelic. “Combining tables, theorem proving and model checking”. MSc
Thesis. McMaster University, 2006.

[19] D. L. Parnas and Y. Wang. The Trace Assertion Method of Module Interface
Specification. CIS Report 89-261. Queen’s University, 1989.

[20] D. L. Parnas. Tabular representation of relations. CLR Report 260. McMaster
University, 1992.

[21] D. L. Parnas. “Inspection of Safety-Critical Software Using Program-Function
Tables”. In: IFIP Congress (3). 1994, pp. 270–277.

[22] D. L. Parnas. “Predicate Logic for Software Engineering”. In: IEEE Trans.
Software Eng. 19.9 (1993), pp. 856–862.

[23] D. L. Parnas. “The Tabular Method for Relational Documentation”. In: Electr.
Notes Theor. Comput. Sci. 44.3 (2001), pp. 1–26.

[24] D. L. Parnas, J. Madey, and M. Iglewski. “Precise Documentation of
Well-Structured Programs”. In: IEEE Trans. Software Eng. 20.12 (1994),
pp. 948–976.

[25] D. L. Parnas and D. K. Peters. “An Easily Extensible Toolset for Tabular
Mathematical Expressions”. In: Proc. TACAS ’99. LNCS 1579. Springer, 1999,
pp. 345–359.

[26] D. Peters, M. Lawford, and B. Trancón y Widemann. “An IDE for software
development using tabular expressions”. In: Proc. CASCON ’07. ACM, 2007,
pp. 248–251.

[27] C. Quinn et al. “Specification of Software Component Requirements Using the
Trace Function Method”. In: Proc. ICSEA ’06. IEEE Computer Society, 2006,
p. 50.

[28] S. Sepehr. “Adding Nested Headers and a Proper Gtk-Based GUI to The
Haskell Table Tools”. McMaster University, 2010. Open Access Dissertations
and Theses: 4412.

[29] B. Trancón y Widemann and D. L. Parnas. “Tabular expressions and total
functional programming”. In: Proc. IFL ’07, Revised selected papers. LNCS
5083. Springer, 2008, pp. 219–236.

[30] B. Trancón y Widemann. “State-based Simulation of Linear Course-of-value
Iteration”. In: Proc. CMCS ’12. Short contribution. Tallinn University of
Technology. 2012.

[31] B. Trancón y Widemann. “The Recursion Scheme of the Trace Function
Method”. In: Proc. ENASE ’12. 2012, pp. 146–155.

[32] T. Uustalu and V. Vene. “Primitive (Co)Recursion and Course-of-Value
(Co)Iteration, Categorically”. In: Informatica, Lith. Acad. Sci. 10.1 (1999),
pp. 5–26.

[33] Y. Wang and D. L. Parnas. “Simulating the Behaviour of Software Modules by
Trace Rewriting”. In: Proc. ICSE ’93. IEEE Computer Society, 1993,
pp. 14–23.

[34] Y. Wang and D. L. Parnas. “Trace Rewriting Systems”. In: Proc. CTRS ’92.
LNCS 656. Springer, 1993, pp. 343–356.

